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Little-Big-Bangs

�

Figure 1. Artist’s conception of the evolution of the Big Bang (top – credit: NASA) and the Little Bang
(bottom – credit: Paul Sorensen and Chun Shen).

Of course, the Big and Little Bangs are quite different in other aspects: Their expansion rates
differ by about 18 orders of magnitude; the Little Bang’s expansion is 3-dimensional and driven
by pressure gradients, not 4-dimensional and controlled by gravity; Little Bangs evolve on time
scales of ioctoseconds, not billions of years; distances are measured in femtometers rather than
light years. Most importantly, the Little Bang Standard Model is still under construction. This
overview discusses recent progress of the edifice.

2. Eccentricity fluctuations, anisotropic flows, and flow fluctuations
We can observe only one Big Bang (the one that produced our universe), but at the Relativistic
Heavy-Ion Collider (RHIC) and Large Hadron Collider (LHC) we have experimentally created
and studied billions of Little Bangs. Each Little Bang is different: Highly successful
phenomenology based on hydrodynamic evolution models [8, 4] has taught us that the initially
very dense quark-gluon matter created in heavy-ion collisions reaches approximate local thermal
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Stages of evolution in heavy-ion collisions I.

Initial stage (Belensky and Landau 1955)

When two nucle(i)ons collide, a compound system
is formed, and energy is released in a small volume
V subject to a
Lorentz contraction in the longitudinal direction.
At the instant of the collision,
a large number of ”particles” are formed: the
”mean free path” (m.f.p.) in the resulting system is
small compared with its dimension, and
statistical equilibrium is set up.

Initial particle production τ ≪ 1 fm/c:
Two nuclei fly through each other (Bjorken
1976, 1983), producing highly excited matter.

Non-equilibrium evolution of the matter
(thermalization) τ ≲ 1 fm/c.

Etele Molnár Multicomponent relativistic dissipative fluid dynamics from the Boltzmann equation



Introduction Fluid dynamics Multicomponent fluid dynamics Conclusions

Stages of evolution in heavy-ion collisions II.

Fluid dynamical evolution of the
QGP τ ∼ 5− 10 fm/c

Transition back to hadronic matter
(QCD phase transition)

Evolution of the hadron gas

Hydrodynamical stage (Belensky and Landau 1955)

The second stage of the collision consists in the
expansion of the system. Here the
hydrodynamical approach must be used, and the
expansion may be
regarded as the motion of an ideal fluid (zero
viscosity and zero thermal conductivity). During the
process of expansion the m.f.p., remains small in
comparisons with the dimensions of the system, and
this justifies the use of hydrodynamics.
Since the velocities in the system are
comparable with that of light, we must use not
ordinary but relativistic hydrodynamics. Particles
are formed and absorbed in the system throughout
the first and second stages of collision. The high
density of energy in the system is of importance
here. In this case, the number of particles is not an
integral of the system, on account of the strong
interaction between the individual particles.
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Stages of evolution in heavy-ion collisions III.

Transition to free particles
(Cooper-Frye 1976)

Freeze-out stage (Belensky and Landau 1955)

As the system expands,
the interaction becomes weaker and the mean free
path becomes larger. The number of particles
appears as the physical characteristic when the
interaction is sufficiently weak. When the mean free
path becomes comparable with the linear
dimensions of the system, the later
breaks up into individual particles. This may be
called the ”break-up” stage. It occurs with a
temperature of the system of the order T ≈ mπc2,
where mπ is the mass of the pion.
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Relativistic fluid dynamics
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Ideal Fluids I.

Conservation laws for a simple (single component) perfect fluid (no dissipation)

∂µN
µ
0 = 0 charge conservation ⇒ 1 eq.

∂µT
µν
0 = 0 energy-momentum conservation ⇒ 4 eqs.

uν∂µT
µν
0 = 0, ∆λ

ν∂µT
µν
0 = 0

Fluid decomposition with respect to uµ

Nµ
0 = n0u

µ Tµν
0 = e0u

µuν − P0∆
µν

n0 = uµN
µ
0 charge density e0 = uµuνT

µν
0 energy density

P0 = −
1

3
∆µνT

µν
0 equilibrium pressure ⇒ 6 unknowns

The time-like normalized flow velocity is uµ(t, x⃗), where uµuµ = 1

The projection tensor ∆µν = gµν − uµuν , where gµν = diag(1,−1,−1,−1)

We have 5 equations for 6 unknowns not closed: n0(1), e0(1),P0(1) and uµ(3).

The assumption of local thermal equilibrium provides closure:

Equation of State (EoS)

P0 = P0(e0, n0) = P0(T , µ) EoS ⇒ 1 eq.
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Dissipative Fluids I.

Conservation laws for a simple (single component) dissipative fluid

∂µN
µ = 0 charge conservation ⇒ 1 eq.

∂µT
µν = 0 energy-momentum conservation ⇒ 4 eqs.

General decomposition Nµ = Nµ
0 + δNµ and Tµν = Tµν

0 + δTµν

Nµ = nuµ + Vµ

Tµν = euµuν − (P0 +Π)∆µν +Wµuν +W νuµ + πµν

n ≡ uµN
µ charge density e ≡ uµuνT

µν energy density

P0 ≡ −
1

3
∆µνT

µν
0 equilibrium pressure

Π ≡ −
1

3
∆µν

(
Tµν − Tµν

0

)
bulk viscous pressure

Vµ ≡ ∆µαNα charge or particle diffusion

Wµ ≡ ∆µαuβTαβ energy-momentum diffusion

πµν ≡ ∆µν
αβTαβ stress tensor ⇒ 17 unknowns

We only have 5 equations for 17 unknowns, n(1), e(1),P(1) ≡ P0(e, n) + Π(1),
uµ(3) and Vµ(3),Wµ(3), πµν(5).
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Dissipative Fluids II.

Simplifications (I): Matching to equilibrium and the EOS

n = n0, e = e0, P(e, n) = P0(e0, n0) + Π

Π = P − P0 = − 1
3
∆µνδTµν

T = T0 and µ = µ0, while s = s0 + δs!

Simplifications (II): Fixing the Local Rest Frame

uµE = Nµ/n ⇔ Vµ = 0 ⇒ qµ = Wµ Eckart frame

uµL = TµνuLν/e ⇔ Wµ = 0 ⇒ qµ = −
e + p

n
Vµ Landau & Lifsitz frame

Now, we are left with 14 unknowns! n(1), e(1), uµ(3) and Π(1), qµ(3), πµν(5).

The definition of entropy is also modified Sµ ≡ Sµ
0 + δSµ = (s0 + δs)uµ +Φµ

2nd law of thermodynamics

∂µS
µ = −

qµ

T

(
1

T
∂µT − u̇µ

)
−

Π

T
∂µu

µ +
πµν

T
∂µuν ≥ 0
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Dissipative Fluids III.

Solution (I): The relativistic Navier-Stokes equations

ΠNS = −ζ∇µu
µ

qµNS = −κT
T n

e + P
∇µ

( µ

T

)
πµν
NS = 2 η∇⟨µuν⟩

(ζ, κ, η) ≥ 0 coefficient of bulk viscosity, thermal conductivity and shear viscosity.

The equations of fluid dynamics are parabolic, hence the relativistic
Navier-Stokes theory leads to accausal signal propagation and stability issues.

Solution (II): Relaxation equations (Israel 1976, Israel and Stewart 1979)

τΠΠ̇ + Π = ΠNS + lΠq∇µq
µ

τq∆
µ
αq̇

α + qµ = qµNS + lqΠ∇µΠ− lqπ∆
µ
α∂νπ

αν

τππ̇
⟨µν⟩ + πµν = πµν

NS + lπq∇⟨µqν⟩

The hyperbolic relaxation equations determine the time evolution of Π, qµ, πµν

The relativistic Navier-Stokes theory follows if the relaxation times and length
scales τi → 0, li → 0 with ζ, η and κq fixed

Etele Molnár Multicomponent relativistic dissipative fluid dynamics from the Boltzmann equation



Introduction Fluid dynamics Multicomponent fluid dynamics Conclusions

Ideal Multicomponent Fluids I.

A multicomponent perfect fluid (no dissipation)

∂µN
µ
0 ≡

Nspec∑
i = 1

∂µN
µ
i,0 ̸= 0 total Nspec particles ⇒ Nspec eqs.

∂µN
µ
q,0 ≡

Nspec∑
i = 1

qi∂µN
µ
i,0 = 0, charge conservation ⇒ Nq eqs.

∂µT
µν
0 ≡

Nspec∑
i = 1

∂µT
µν
i,0 = 0, total energy-momentum conservation ⇒ 4 eqs.

qi = {Bi ,Qi , Si} are the baryon number, electric charge, and strangeness of species i .

Nµ
0 ≡

Nspec∑
i = 1

Nµ
i,0 =

Nspec∑
i=1

niu
µ = nuµ, Nµ

q,0 ≡
Nspec∑
i = 1

qiN
µ
i,0 =

Nspec∑
i=1

qiniu
µ = nqu

µ,

Tµν
0 ≡

Nspec∑
i = 1

Tµ
i,0 =

Nspec∑
i=1

(eiu
µuν − Pi∆

µν) = euµuµuν − P∆µν ,

n =

Nspec∑
i = 1

ni , nq =

Nspec∑
i = 1

qini , e =

Nspec∑
i = 1

ei , P =

Nspec∑
i = 1

Pi
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Dissipative Multicomponent Fluids I.

A multicomponent dissipative fluid

∂µN
µ ≡

Nspec∑
i = 1

∂µ
(
Nµ
0,i + δNµ

i

)
̸= 0, ∂µN

µ
q ≡

Nspec∑
i = 1

qi∂µ
(
Nµ
0,i + δNµ

i

)
= 0,

∂µT
µν ≡

Nspec∑
i = 1

∂µ
(
Tµν
0,i + δTµν

i

)
= 0 ⇒ Nq + 4 eqs.

where after matching to equilibrium and fixing the local rest frame

Nµ ≡
Nspec∑
i = 1

Nµ
i =

Nspec∑
i = 1

[
(ni + δni ) u

µ + Vµ
i

]
= nuµ + Vµ , (1)

Nµ
q ≡

Nspec∑
i = 1

qiN
µ
i =

Nspec∑
i = 1

[
qi (ni + δni ) u

µ + qiV
µ
i

]
= nqu

µ + Vµ
q , (2)

Tµν ≡
Nspec∑
i = 1

Tµν
i =

Nspec∑
i = 1

[
(ei + δei ) u

µuν − (Pi +Πi )∆
µν + 2W

(µ
i u ν) + πµν

i

]
= euµuν − (P +Π)∆µν + πµν . ⇒ 10 + 4Nq unknowns. (3)

Etele Molnár Multicomponent relativistic dissipative fluid dynamics from the Boltzmann equation



Introduction Fluid dynamics Multicomponent fluid dynamics Conclusions

Multicomponent fluid dynamics
from the Boltzmann equation in the
(10 + 4Nq)-moment approximation
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The relativistic Boltzmann equation

The single-component relativistic Boltzmann equation

kµ∂µfk = C [fk] , (4)

C [fk] =
1

2

∫
dK ′dPdP′Wkk′→pp′

(
fpfp′ f̃k f̃k′ − fkfk′ f̃p f̃p′

)
Here kµ = (k0, k) is the four-momenta of particles with rest mass m and energy
k0 =

√
k2 +m2. Furthermore, f̃k = 1− afk, with a = 0/a = 1/a = −1 for

Boltzmann/Fermi/Bose statistics, while dK = gd3 k/
[
(2π)3k0

]
.

The multicomponent relativistic Boltzmann equation

kµ
i ∂µfi,k = Ci (x , ki ) ≡

Nspec∑
j = 1

Cij [f ], (5)

Cij [f ] =
1

2

Nspec∑
a,b= 1

∫
dK ′

j dPadP
′
b

(
W pp′→kk′

ab→ij fa,pfb,p′ f̃i,k f̃j,k′ −W kk′→pp′

ij→ab fi,kfj,k′ f̃a,p f̃b,p′
)

Transition probabilities W pp′→kk′

ab→ij and W kk′→pp′

ij→ab
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Distribution function of species-i

fi,k = f
(0)
i,k + δfi,k ⇒ equilibirum+ off-equilibirum , (6)

Local equilibrium distribution of species-i

f
(0)
i,k = gi

[
exp

(
Ei,k − µi

T

)
+ ai

]−1

, (7)

where ai = ±1 for fermions/bosons and ai → 0 for classical particles

Chemical potentials of species

µi ({µq}) ≡
{B,Q,S}∑

q

qiµq = BiµB + QiµQ + SiµS , (8)

where qi is the intrinsic quantum number of particle species i
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Conservation equations

0-th and 1-st moments

Nµ
i ≡

∫
dKik

µ
i

(
f
(0)
i,k + δfi,k

)
= Nµ

i,0 + ρµi,0 = ⟨kµ⟩i,0 + ⟨kµ⟩i,δ ≡ ⟨kµ⟩i

Tµν
i ≡

∫
dKik

µ
i k

ν
i

(
f
(0)
i,k + δfi,k

)
= Tµν

i,0 + ρµνi,0 = ⟨kµkµ⟩i,0 + ⟨kµkν⟩i,δ ≡ ⟨kµkν⟩i

Irreducible moments of δfk,i

ρ
µ1···µℓ
i,r ≡ ∆

µ1···µℓ
ν1···νℓ

∫
dKiE

r
i,kk

µ1
i · · · kµℓ

i δfi,k =
〈
E r
kk

⟨µ1 · · · k µℓ⟩
〉
i,δ

(9)

Conservation equations from the Boltzmann equation

∂µN
µ ≡

Nspec∑
i = 1

∂µN
µ
i =

Nspec∑
i = 1

∫
dKiCi ̸= 0 (10)

∂µN
µ
q ≡

Nspec∑
i = 1

qi∂µN
µ
i =

Nspec∑
i = 1

qi

∫
dKiCi = 0 (11)

∂µT
µν ≡

Nspec∑
i = 1

∂µT
µν
i =

Nspec∑
i = 1

∫
dKik

ν
i Ci = 0 (12)
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General equations of motion

Beyond the conservation equations we obtain an hierarchy of relaxation equations

General equations of motion

Nspec∑
i = 1

N0∑
r = 0

τ
(0)
si,nr ρ̇i,r + ρs,n = −ζs,nθ +O(2) , (13)

Nspec∑
i = 1

N1∑
r = 0

τ
(1)
si,nr ρ̇

⟨µ⟩
i,r + ρµs,n =

{B,Q,S}∑
q

κs,n,q∇µαq +O(2) , (14)

Nspec∑
i = 1

N2∑
r = 0

τ
(2)
si,nr ρ̇

⟨µν⟩
i,r + ρµν

s,n = 2ηs,nσ
µν +O(2) , (15)

τ
(ℓ)
si,nr are microscopic time-scales like the m.f.p from the inverse of the collision matrix

First-order species-specific coefficients

ζs,n ≡ −
Nspec∑
i = 1

N0∑
r = 0

τ
(0)
si,nrα

(0)
i,r , κs,n,q ≡

Nspec∑
i = 1

N1∑
r = 0

τ
(1)
si,nrα

(1)
i,r,q ,

ηs,n ≡
Nspec∑
i = 1

N2∑
r = 0

τ
(2)
si,nrα

(2)
i,r , ⇒ α

(ℓ)
i,r are thermodynamic quantities (16)

Etele Molnár Multicomponent relativistic dissipative fluid dynamics from the Boltzmann equation



Introduction Fluid dynamics Multicomponent fluid dynamics Conclusions

Order-of-magnitude approximation

Order-of-magnitude approximation - the Navier-Stokes limit

ρs,n = −ζs,nθ +O(2), ρµs,n =

{B,Q,S}∑
q

κs,n,q∇µαq +O(2), ρµνs,n = 2ηs,nσ
µν +O(2),

where for example

ρs,0 ≡ −
3

m2
s

Πs =
ζs,0

ζ
Π, ρµνs,0 ≡ πµν

s =
ηs,0

η
πµν ,

First-order dissipative quantities

Π ≡ −
Nspec∑
s = 1

m2
s

3
ρs,0 =

Nspec∑
s = 1

m2
s

3
ζs,0θ ≡ −ζθ , ζ ≡ −

Nspec∑
s = 1

m2
s

3
ζs,0

Vµ
q ≡

Nspec∑
s = 1

qsρ
µ
s,0 =

{B,Q,S}∑
q′

Nspec∑
s = 1

qsκs,0,q′∇µαq′ ≡
{B,Q,S}∑

q′
κqq′∇µαq′ ,

πµν ≡
Nspec∑
s = 1

ρµνs,0 =

Nspec∑
s = 1

2ηs,0σ
µν ≡ 2ησµν , κqq′ ≡

Nspec∑
s = 1

qsκs,0,q′ , η ≡
Nspec∑
s = 1

ηs,0 .
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The relaxation equations I.

The relaxation equation for the bulk viscous pressure

τΠΠ̇ + Π = −ζθ − δΠΠ Πθ + λΠπ πµνσµν −
{B,Q,S}∑

q

ℓ
(q)
ΠV ∇µV

µ
q

−
{B,Q,S}∑

q

τ
(q)
ΠV Vµ

q u̇µ −
{B,Q,S}∑

q,q′
λ
(q,q′)
ΠV Vµ

q ∇µαq′ , (17)

The relaxation equation for the diffusion currents

{B,Q,S}∑
q

τq′q V̇
⟨µ⟩
q + Vµ

q′ =

{B,Q,S}∑
q

κq′q ∇µαq −
{B,Q,S}∑

q

τq′q Vq,νω
νµ (18)

−
{B,Q,S}∑

q

δ
(q′,q)
VV Vµ

q θ −
{B,Q,S}∑

q

λ
(q′,q)
VV Vq,νσ

µν

− ℓ
(q′)
VΠ ∇µΠ+ ℓ

(q′)
Vπ ∆µν∇λπ

λ
ν + τ

(q′)
VΠ Πu̇µ − τ

(q′)
Vπ πµν u̇ν

+

{B,Q,S}∑
q

λ
(q′,q)
VΠ Π∇µαq −

{B,Q,S}∑
q

λ
(q′,q)
Vπ πµν∇ναq , (19)
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The relaxation equations II.

The relaxation equation for the shear-stress

τππ̇
⟨µν⟩ + πµν = 2ησµν + 2τπ π

⟨µ
λ ω ν⟩λ − δππ πµνθ − τππ πλ⟨µ σ

ν⟩
λ

+ λπΠ Πσµν −
{B,Q,S}∑

q

τ
(q)
πV V

⟨µ
q u̇ ν⟩ +

{B,Q,S}∑
q

ℓ
(q)
πV ∇⟨µ V

ν⟩
q

+

{B,Q,S}∑
q,q′

λ
(q,q′)
πV V

⟨µ
q ∇ ν⟩αq′ . (20)
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Conclusions

Multicomponent fluid dynamics from the Boltzmann equation, using the method
of moments in 14-moment approximation was derived

We identified and computed the transport coefficients in the massless limit

Will be used in fluid dynamical simulations in the future
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