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Introduction
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Stages of evolution in heavy-ion collisions |.

Initial stage (Belensky and Landau 1955)

When two nucle(i)ons collide, a compound system
is formed, and energy is released in a small volume
V subject to a

Lorentz contraction in the longitudinal direction.
At the instant of the collision,

a large number of ” particles” are formed: the
"mean free path” (m.f.p.) in the resulting system is
small compared with its dimension, and

statistical equilibrium is set up.

o Initial particle production 7 < 1 fm/c:
Two nuclei fly through each other (Bjorken
1976, 1983), producing highly excited matter.

@ Non-equilibrium evolution of the matter
(thermalization) 7 < 1 fm/c.

Etele Molnar Multicomponent relativistic dissipative fluid dynamics from the Boltzmann



Introduction
L]

Stages of evolution in heavy-ion collisions II.

Hydrodynamical stage (Belensky and Landau 1955)

The second stage of the collision consists in the

expansion of the system. Here the

hydrodynamical approach must be used, and the

expansion may be

regarded as the motion of an ideal fluid (zero

viscosity and zero thermal conductivity). During the

process of expansion the m.f.p., remains small in

comparisons with the dimensions of the system, and

this justifies the use of hydrodynamics.

Since the velocities in the system are

comparable with that of light, we must use not

o Fluid dynamical evolution of the ordinary but relativistic hydrodynamics. Particles
QGP 7 ~ 5 — 10 fm/c are formed and absorbed in the system throughout

the first and second stages of collision. The high

density of energy in the system is of importance

here. In this case, the number of particles is not an

o Evolution of the hadron gas integral of the system, on account of the strong

interaction between the individual particles.

@ Transition back to hadronic matter
(QCD phase transition)
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Stages of evolution in heavy-ion collisions II1.

Freeze-out stage (Belensky and Landau 1955)

As the system expands,
the interaction becomes weaker and the mean free
path becomes larger. The number of particles
appears as the physical characteristic when the
interaction is sufficiently weak. When the mean free
path becomes comparable with the linear
dimensions of the system, the later
breaks up into individual particles. This may be
called the "break-up” stage. It occurs with a
. i temperature of the system of the order T &~ myc?,
o Transition to free particles where my is the mass of the pion.

(Cooper-Frye 1976)
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Fluid dynamics
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Relativistic fluid dynamics
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Fluid dynamics
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Ideal Fluids I.

Conservation laws for a simple (single component) perfect fluid (no dissipati

OuNy =0 charge conservation = 1 eq.

ouTH =0 energy-momentum conservation = 4 egs.

wOuTE =0, A} T =0

y
Fluid decomposition with respect to u*
N§ = nout T4 = eoutu? — PyAMY
ng = u NY charge density e = upuy T4 energy density
1
Py = —EA#U T equilibrium pressure = 6 unknowns

The time-like normalized flow velocity is u*(t,X), where utu, =1
The projection tensor A*Y = gh¥ — yty¥, where gt = diag(1,—1,—1,—1)
We have 5 equations for 6 unknowns not closed: np(1), ep(1), Po(1) and u#(3).

The assumption of local thermal equilibrium provides closure:

Equation of State (EoS)

Py = Po(ep, ng) = Po(T, ) EoS = 1 eq.
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Fluid dynamics
[ ]

Dissipative Fluids I.

Conservation laws for a simple (single component) dissipative fluid

OuN* =0 charge conservation =1 eq.

Ou THY =0 energy-momentum conservation = 4 eqs.

General decomposition N# = N§' + §N* and THY = T§" + §TH

NH = nut + V#
TH = eutu” — (Po + M)A*Y + WHUY + WY ut + mH¥

n= u, N* charge density e=uyu, TH energy density
Py = f%A#V Té“’ equilibrium pressure
n= —%AW (TH = T§™) bulk viscous pressure
VHE = AFY N, charge or particle diffusion
WH = AreyB Top energy-momentum diffusion
T = A’;g Tog stress tensor = 17 unknowns

@ We only have 5 equations for 17 unknowns, n(1),e(1), P(1) = Po(e, n) + (1),
ut(3) and V#(3), WH(3), mH(5).
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Dissipative Fluids II.

Simplifications (1): Matching to equilibrium and the EOS

n=np, €= e, P(e,n):Po(eo,no)JrI'l

e MN=P—Py=—30,,6TH
o T = Ty and u = o, while s = sp + Js!

Simplifications (I1): Fixing the Local Rest Frame

ug = Nt/n & VHE=0 =gqg"'=WH Eckart frame
u = THuple ©WH=0 =g¢'= feJripV“ Landau & Lifsitz frame
n

o Now, we are left with 14 unknowns! n(1), e(1), u*(3) and M(1), g*(3), 7" (5).
o The definition of entropy is also modified S¥* = SSL + 0SH = (sp + ds)ut + dH

2nd law of thermodynamics
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Dissipative Fluids IlI.

Solution (1): The relativistic Navier-Stokes equations

I_INS = —Cvuu”
Tn o
(% = = p( 2
Ins KT Py (T)
T = 2n Vit

@ (¢, k,n) > 0 coefficient of bulk viscosity, thermal conductivity and shear viscosity.

@ The equations of fluid dynamics are parabolic, hence the relativistic
Navier-Stokes theory leads to accausal signal propagation and stability issues.

Solution (I1): Relaxation equations (Israel 1976, Israel and Stewart 1979)

Tnﬁ + M= I"INS + IanMq“
TeALGY + g = gls + lgn VI — lgn AL, T

TarcSHYY g — ﬂ-mg + /ﬁqquv)

@ The hyperbolic relaxation equations determine the time evolution of I1, g#, ©H¥

@ The relativistic Navier-Stokes theory follows if the relaxation times and length
scales 7; = 0, [; = 0 with ¢, n and k4 fixed
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Ideal Multicomponent Fluids I.

multicomponent perfect fluid issipatiol

Nspec
OuNy = Z BHN,.*jO #£0 total Nspec particles = Nspec €gs.

i=1
Nspec

O N[‘;’O = Z qiOy N,.‘fo =0, charge conservation = I\, egs.
=1l
Nspec

T = Z O T#c;J =0, total energy-momentum conservation = 4 egs.
=1

qi = {Bi, Q;, S;} are the baryon number, electric charge, and strangeness of species i.

Nspec Nspec Nspec Nspec
- o E: TR 2 : 2 : B = pout,
Ny = E Ni,o_ njut = nut, qO, qiN :0_ ginju* = nqu
i=1 i=1 i=1
Nspec Nspec
T8 = E Ty = E (ejuHu” — PiAFY) = eututu” — PARY
g

i=1

Nspec Nspec Nspec Nspec

P=Yom m=oam  e=Y e P=> A
i=1

i=1 i=1 i=1




Fluid dynamics
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Dissipative Multicomponent Fluids .

A multicomponent dissipative fluid

Nspec Nspec
Bul* =37 0 (Mg +0NE) £0,  0uNE =D aid (N +6NF) =0,
i=1 i=1
BuTH =3 8, (T4 +6T/) =0 = Nq +4eas.
i=1

where after matching to equilibrium and fixing the local rest frame

Nespec Nespec
N“EZN}L:Z [(nj + 6n;) ut + VH] = nut + V# | (1)
i=1 i=1
Nspec Nspec
NE = Z qiN! = Z [gi (ni + 6m) u" + qi V] = nqut + VI, (2)
i=1 i=1
Nspec Nspec
TH = Z T,f“’ = Z [(e,»+6e,-) utu” — (P + 1 )A‘W+2W(p‘ +7T”V]
i=1 i=1
= eutu” — (P + M) AFY + 7h¥. = 10 + 4Ny unknowns. 3)
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Multicomponent fluid dynamics
from the Boltzmann equation in the
(10 + 4N,)-moment approximation
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Multicomponent fluid dynamics
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The relativistic Boltzmann equation

The single-component relativistic Boltzmann equation

Kta.fo = C ], (4)

1 o~ -
Clil=3 / dK’ dPAP’ Wigs— ppr (fpfp/fkfk/ — fiefu fpfp/)

Here k# = (k°, k) is the four-momenta of particles with rest mass m and energy
kO = v/k2 + m2. Furthermore, f, = 1 — afy, with a=0/a=1/a= —1 for
Boltzmann/Fermi/Bose statistics, while dK = gd®k/ [(2m)3k°].

The multicomponent relativistic Boltzmann equation

Nspec
Kl = Ci(x, k) = Y Gjlfl, (5)
i=1
1 o 0 / pp’ — kk’ 7 A kk' —pp’ 7
Gilfl=5 > / dK} dPadPy (W T fofy g FcFise — W07 fisc o Fa o)
a,b=1

’ ’ ’ ’
kk kk
WPP M and Wi PP

Transition probabilities ab—s i ab
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Multicomponent fluid dynamics
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Distribution function of species-i

fik= fi(ﬁ) + 0fik = equilibirum + off-equilibirum , (6)

)

Local equilibrium distribution of species-i

Eix — pi -t
2 =g {eXP (%ﬂ) + a,-] ; )

where a; = £1 for fermions/bosons and a; — 0 for classical particles

| .

€

Chemical potentials of species

{B,Q,S}

pi({ugt) = D ding = Bins + Qing + Sitss (8)
q

where q; is the intrinsic quantum number of particle species i
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Multicomponent fluid dynamics
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Conservation equations

0-th and 1-st moments

NF = /dK,-k,.“ (f,fﬂ) + éf,-,k> = NE+ plly = (kM) o+ (kBY; 5 = (kM)

T = [ akikttky (59 + 8h) = ThY + oty = CRERE), g + (KK, 5 = (),

Irreducible moments of 6fy ;

I /dK,-E,{kk;’l ko8 = (kb )y NC)

Conservation equations from the Boltzmann equation

Nspec Nspec
Nt =D "Nt =" /dK,-Ci £0 (10)
i=1 i=1
Nspec Nspec
0uNy = 3" aduN! = a; [ akiCi =0 (11)
i=1 i=1
Nspec Nspec
BTH =D 8, T = > /dK,-k,-”C,- =0 (12)
i=1 =1

Etele Molnar Multicomponent relativistic dissipative fluid dynamics from the Boltzmann



Multicomponent fluid dynamics
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General equations of motion

Beyond the conservation equations we obtain an hierarchy of relaxation equations

General equations of moti

Nspec  No
Z Z Tsi, n,pr r+ ps,n = —Cs,n0 + 0(2), (13)
i=1r=0
Nspec Ny {B,Q,S}
Z Z sr nrplO:> + p;" = Z lﬂsm,qvuaq + 0(2) ) (14)
f=1 r= q
Nspec N
> Z T 68 4 oty = 2me ot + O(2) (15)
=1 Fr=
S(IZ)nr are microscopic time-scales like the m.f.p from the inverse of the collision matrix

First-order species-specific coefficients

Nspec  No Nspec  Nq
Cs,n = — E E 70,0 K E E
Shlt = si,nriyr s,n,q = s: nr
i=1r=0 i=1r=0
Nspec  No

a([
i

o

Ns,n are thermodynamic quantities (16)

1l
i\
(]
V\q/—\
28
2
NG
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Multicomponent fluid dynamics
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Order-of-magnitude approximation

Order-of-magnitude approximation - the Navier-Stokes limit

{B,Q,S}
psn=—Conf +OQ2), php= D kengViag+0(2), phi=2ns00" +0(2),
q
where for example
— 3 CS,O py o 7s,0
Ps,0 = 7m—zl'|5 = c mn, phs = Tl'éw = Tﬂ'“y’ J
First-order dissipative quantities
Nspec D) Nspec 2 Nspec 2
m; m m
N=-3 ZPpso=2 FGof=—C0, ¢(=-3 G
s=1 s=1 s=1
Nspec {B,Q,S} Nspec {B,Q,S}
Vi = Z qspf,o = Z Z Qskis0,q Vg = Z Keq Viag ,
s=1 q’ s=1 q’
Nspec Nspec Nspec Nspec
T = Z Pho = Z s 00t =200t | Ky = Z Gsks o, » N= Z 7s,0 -
s=1 s=1 s=1 s=1
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Multicomponent fluid dynamics
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The relaxation equations .

The relaxation equation for the bulk viscous pressure

{B,Q,S}
A+ N = —C0 — 6nn N6 + A T 0 — > L5 Vu VE
q
{B,Q,S} {B,Q,S}
ST A v~ Z PCERRVA (17)
q 9,9’
The relaxation equation for the diffusion currents
{B,Q,S} {B,Q,S} {B,Q,S}
Z Tl VW> + V” = Z Kq'q Viag — Z Tq'q Va,uw'™* (18)
q q q
{8,Q,S} {B,Q,S}
- 3 Svee— ST AL vy o
q q

A9 ven + 69) AV AT + 7
{BOS} {B,Q,S}
4+ Z M) Nvka, Z M v g, (19)

(0 = )
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Multicomponent fluid dynamics
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The relaxation equations II.

The relaxation equation for the shear-stress

TatSHY) 4 iy — 2not? + 27, 7r§\” WA — S TV — T TN H 0')'\/>
{B,Q,S} {B,Q,S}
+ Ao Mokv — Z ( ) V(H v) + Z Z(Q) V(u V”)
q q
{B,Q,S}
-+ Z PG RRVACE P (20)
q.q’
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Conclusions
°

@ Multicomponent fluid dynamics from the Boltzmann equation, using the method
of moments in 14-moment approximation was derived

o We identified and computed the transport coefficients in the massless limit

o Will be used in fluid dynamical simulations in the future

fluid dynamics from the Boltzmann
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