XV Polish Workshop on Relativistic Heavy-Ion Collisions

24-25.09.2022, Wrocław, Poland

Unified view of superdense hadronic matter Twenty years after - closer or farther?

ORGANISERS

Chihiro Sasaki David Blaschke Krzysztof Redlich Ludwik Turko Pasi Huovinen

CONTACT

david.blaschke@uwr.edu.pl ludwik.turko@uwr.edu.pl https://indi.to/nTQsk

RESEARCH University

Painted by Aleksandra Niewczas

XV Polish Workshop on Relativistic Heavy-Ion Collisions

24-25.09.2022, Wrocław, Poland

Unified view of superdense hadronic matter Twenty years after - closer or farther?

ORGANISERS

Chihiro Sasaki David Blaschke Krzysztof Redlich Ludwik Turko Pasi Huovinen

CONTACT

david.blaschke@uwr.edu.pl ludwik.turko@uwr.edu.pl https://indi.to/nTQsk

Painted by Aleksandra Niewczas

RESEARCH UNIVERSITY

INCUBATOR

What is CSSF?

Pasi Huovinen

Incubator of Scientific Excellence—Centre for Simulations of Superdense Fluids University of Wrocław

XV Polish Workshop on Relativistic Heavy-Ion Collisions September 24, 2022, Wrocław, Poland

with Michał Marczenko and Etele Molnár

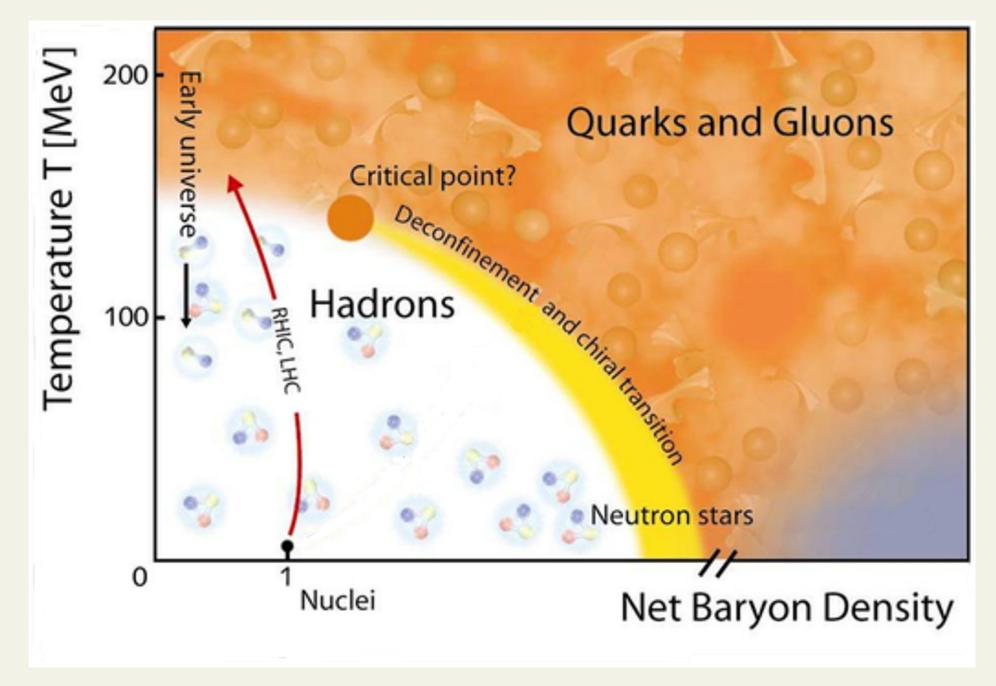
Incubator of Scientific Excellence—Centre for Simulations of Superdense Fluids (CSSF)

• new research group at UWr, established in September 2021

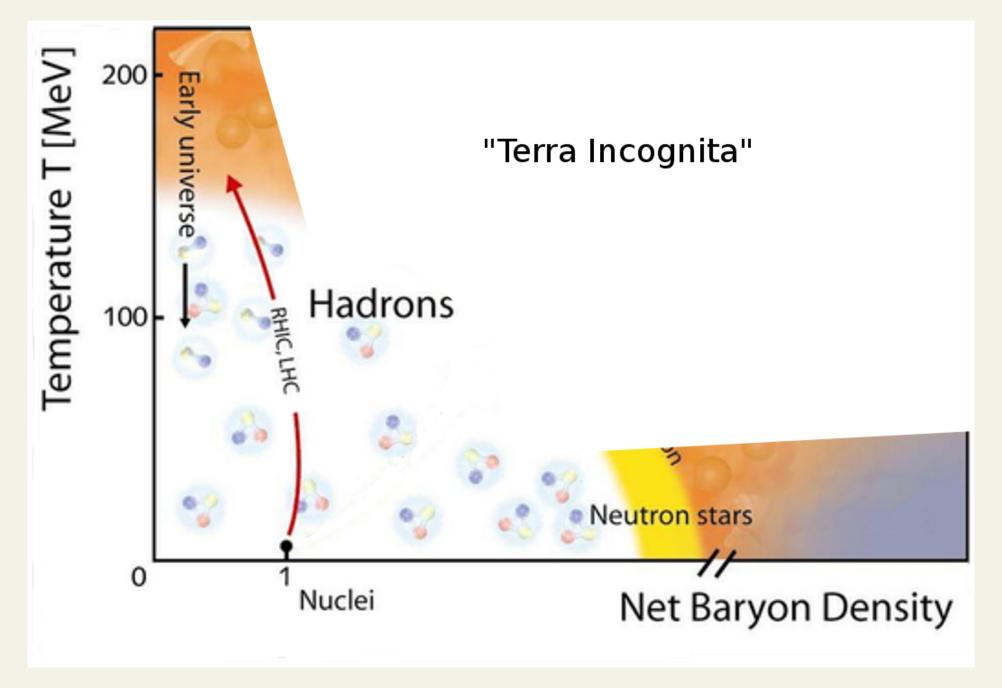
- new research group at UWr, established in September 2021
- dedicated to fluid-dynamical modeling of heavy-ion collisions at few GeV collision energies (FAIR, J-PARC, RHIC BES, SPS)

- new research group at UWr, established in September 2021
- dedicated to fluid-dynamical modeling of heavy-ion collisions at few GeV collision energies (FAIR, J-PARC, RHIC BES, SPS)
- Team:
 - head: Pasi Huovinen

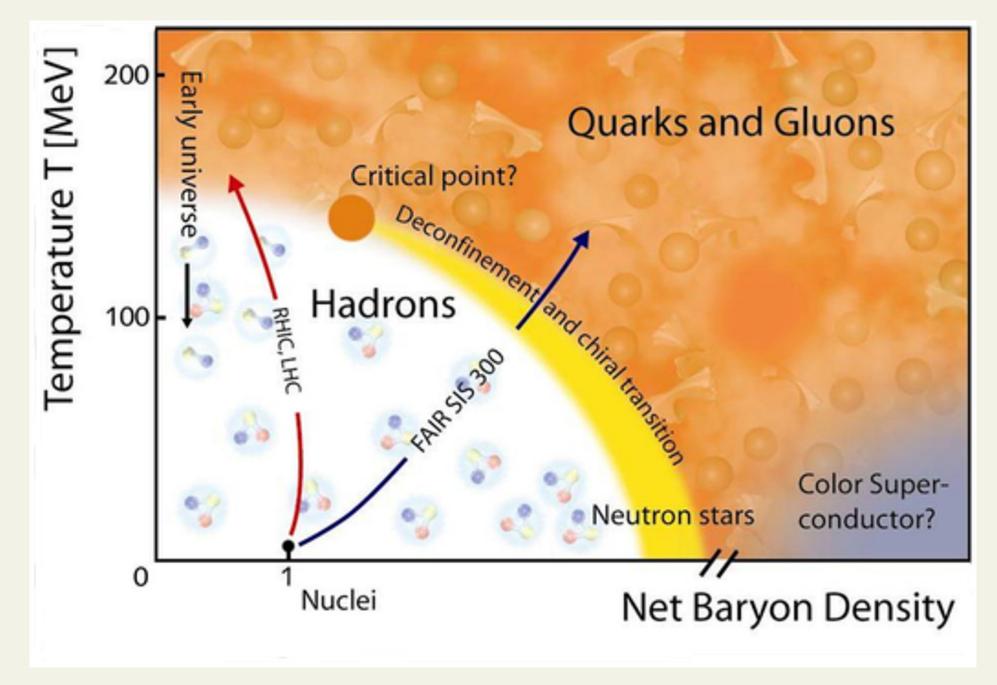
- new research group at UWr, established in September 2021
- dedicated to fluid-dynamical modeling of heavy-ion collisions at few GeV collision energies (FAIR, J-PARC, RHIC BES, SPS)
- Team:
 - head: Pasi Huovinen
 - two post-docs: Michał Marczenko and Etele Molnár


- new research group at UWr, established in September 2021
- dedicated to fluid-dynamical modeling of heavy-ion collisions at few GeV collision energies (FAIR, J-PARC, RHIC BES, SPS)
- Team:
 - head: Pasi Huovinen
 - two post-docs: Michał Marczenko and Etele Molnár
 - one post-doc to be hired

- new research group at UWr, established in September 2021
- dedicated to fluid-dynamical modeling of heavy-ion collisions at few GeV collision energies (FAIR, J-PARC, RHIC BES, SPS)
- Team:
 - head: Pasi Huovinen
 - two post-docs: Michał Marczenko and Etele Molnár
 - one post-doc to be hired
 - one student to join during autumn 2022

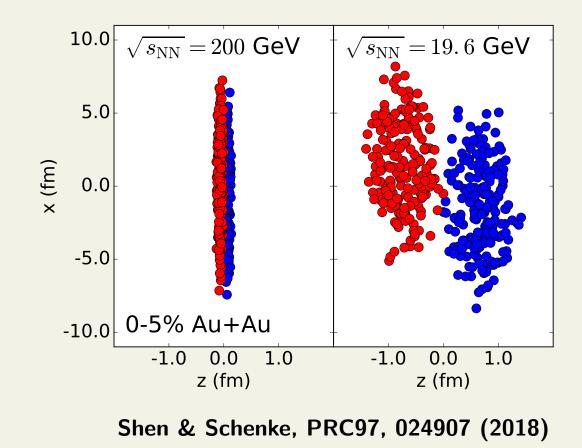

- new research group at UWr, established in September 2021
- dedicated to fluid-dynamical modeling of heavy-ion collisions at few GeV collision energies (FAIR, J-PARC, RHIC BES, SPS)
- Team:
 - head: Pasi Huovinen
 - two post-docs: Michał Marczenko and Etele Molnár
 - one post-doc to be hired
 - one student to join during autumn 2022
- organised:
 - this meeting
 - 58. Karpacz Winter School of Theoretical Physics, June 19-25

- new research group at UWr, established in September 2021
- dedicated to fluid-dynamical modeling of heavy-ion collisions at few GeV collision energies (FAIR, J-PARC, RHIC BES, SPS)
- Team:
 - head: Pasi Huovinen
 - two post-docs: Michał Marczenko and Etele Molnár
 - one post-doc to be hired
 - one student to join during autumn 2022
- organised:
 - this meeting
 - 58. Karpacz Winter School of Theoretical Physics, June 19-25
- funding until the end of 2025

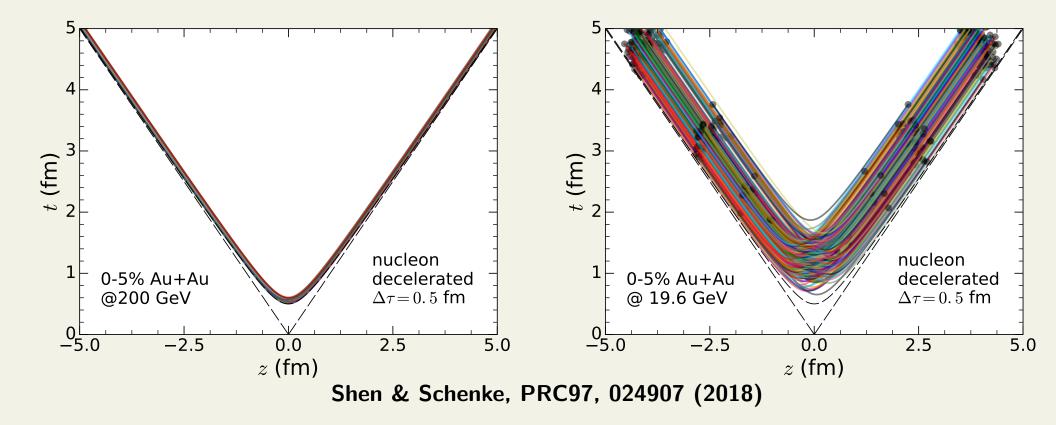

Phase diagram

Phase diagram

Phase diagram



1. lower multiplicity \implies smaller system


 \implies larger deviations from equilibrium?

- 1. lower multiplicity \implies smaller system \implies larger deviations from equilibrium?
- 2. primary collisions overlap with secondary collisions

- 1. lower multiplicity \implies smaller system \implies larger deviations from equilibrium?
- 2. primary collisions overlap with secondary collisions

- 1. lower multiplicity \implies smaller system \implies larger deviations from equilibrium?
- 2. primary collisions overlap with secondary collisions

in collaboration with Iurii Karpenko and Jakub Cimerman at CVUT Prague

$$0 = \partial_{\mu}T^{\mu\nu}$$

in collaboration with Iurii Karpenko and Jakub Cimerman at CVUT Prague

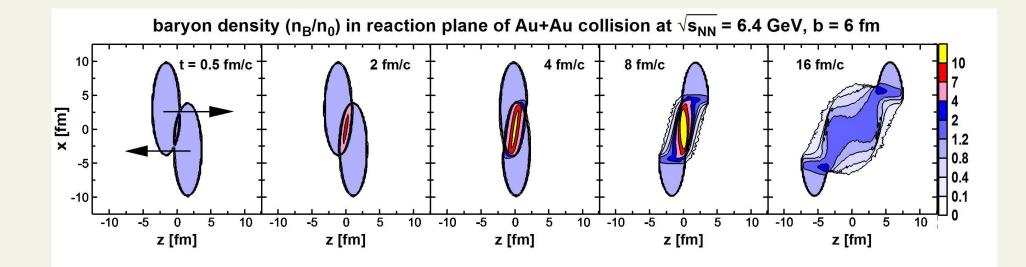
$$0 = \partial_{\mu} T^{\mu\nu}$$
$$= \partial_{\mu} T^{\mu\nu}_{t}$$

 $T_{\rm t}^{\mu\nu} = {\rm target~fluid}$

in collaboration with Iurii Karpenko and Jakub Cimerman at CVUT Prague

$$0 = \partial_{\mu} T^{\mu\nu}$$
$$= \partial_{\mu} T^{\mu\nu}_{t} + \partial_{\mu} T^{\mu\nu}_{p}$$

 $T_{\rm t}^{\mu
u} =$ target fluid $T_{\rm p}^{\mu
u} =$ projectile fluid


in collaboration with Iurii Karpenko and Jakub Cimerman at CVUT Prague

$$0 = \partial_{\mu} T^{\mu\nu}$$
$$= \partial_{\mu} T^{\mu\nu}_{t} + \partial_{\mu} T^{\mu\nu}_{p} + \partial_{\mu} T^{\mu\nu}_{fb}$$

$$T_{\rm t}^{\mu
u} =$$
 target fluid
 $T_{\rm p}^{\mu
u} =$ projectile fluid
 $T_{\rm fb}^{\mu
u} =$ fireball fluid

$$\begin{aligned} \partial_{\mu} T_{t}^{\mu\nu}(x) &= -F_{t}^{\nu}(x) + F_{ft}^{\nu}(x) \\ \partial_{\mu} T_{p}^{\mu\nu}(x) &= -F_{p}^{\nu}(x) + F_{fp}^{\nu}(x) \\ \partial_{\mu} T_{fb}^{\mu\nu}(x) &= -F_{p}^{\nu}(x) + F_{t}^{\nu}(x) - F_{fp}^{\nu}(x) - F_{ft}^{\nu}(x) \end{aligned}$$

$$\begin{aligned} \partial_{\mu} T_{\rm t}^{\mu\nu}(x) &= -F_{\rm t}^{\nu}(x) + F_{\rm ft}^{\nu}(x) \\ \partial_{\mu} T_{\rm p}^{\mu\nu}(x) &= -F_{\rm p}^{\nu}(x) + F_{\rm fp}^{\nu}(x) \\ \partial_{\mu} T_{\rm fb}^{\mu\nu}(x) &= -F_{\rm p}^{\nu}(x) + F_{\rm t}^{\nu}(x) - F_{\rm fp}^{\nu}(x) - F_{\rm ft}^{\nu}(x) \end{aligned}$$

dissipative fluid with 3 conserved charges

derive equations of motion from Boltzmann equation

$$k_i^{\mu}\partial_{\mu}f_{i,\mathbf{k}} = 0 \quad \Rightarrow \quad \dot{\Pi}, \ \dot{V}_q^{\langle\nu\rangle} \ \dot{\pi}^{\langle\mu\nu\rangle}$$

where $q = \{B, S, Q\}$

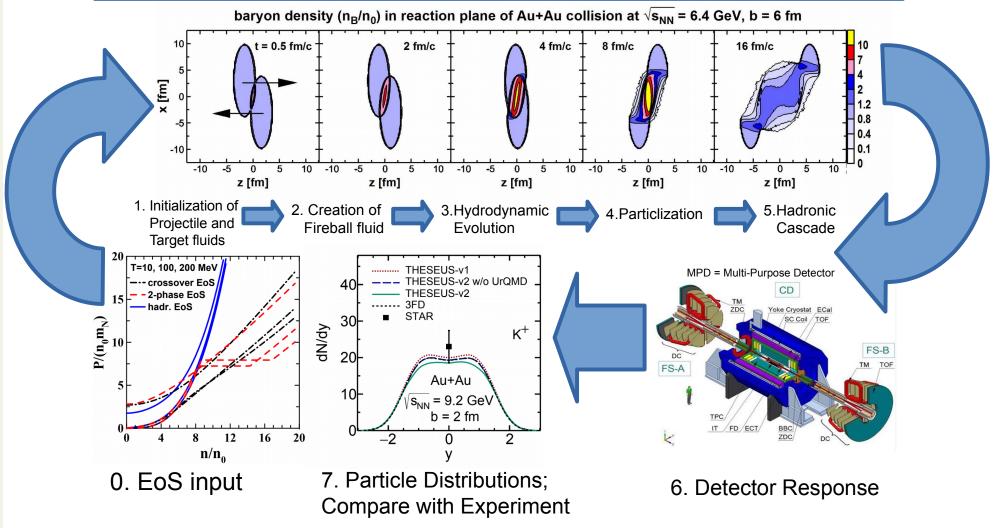
dissipative fluid with 3 conserved charges

derive equations of motion from Boltzmann equation

$$k_i^{\mu}\partial_{\mu}f_{i,\mathbf{k}} = 0 \quad \Rightarrow \quad \dot{\Pi}, \ \dot{V}_q^{\langle\nu
angle} \ \dot{\pi}^{\langle\mu\nu
angle}$$

where $q = \{B, S, Q\}$

dynamical initialisation utilising source terms


$$\partial_{\mu} T_{t}^{\mu\nu}(x) = -F_{t}^{\nu}(x)$$

$$\partial_{\mu} T_{p}^{\mu\nu}(x) = -F_{p}^{\nu}(x)$$

$$\partial_{\mu} T_{fb}^{\mu\nu}(x) = F_{p}^{\nu}(x) + F_{t}^{\nu}(x)$$

where $T_{\rm t}$ and $T_{\rm p}$ are not fluids but currents

3-fluid hydrodynamics simulation

CSSF

- research group at UWr
- for fluid dynamical modeling of heavy-ion collisions
- stay tuned!

XV Polish Workshop on Relativistic Heavy-Ion Collisions

24-25.09.2022, Wrocław, Poland

Unified view of superdense hadronic matter Twenty years after - closer or farther?

ORGANISERS

Chihiro Sasaki David Blaschke Krzysztof Redlich Ludwik Turko Pasi Huovinen

CONTACT

david.blaschke@uwr.edu.pl ludwik.turko@uwr.edu.pl https://indi.to/nTQsk

RESEARCH University

Painted by Aleksandra Niewczas

XV Polish Workshop on Relativistic Heavy-Ion Collisions

24-25.09.2022, Wrocław, Poland

Unified view of superdense hadronic matter Twenty years after - closer or farther?

ORGANISERS

Chihiro Sasaki David Blaschke Krzysztof Redlich Ludwik Turko Pasi Huovinen

CONTACT

david.blaschke@uwr.edu.pl ludwik.turko@uwr.edu.pl https://indi.to/nTQsk

Painted by Aleksandra Niewczas

RESEARCH UNIVERSITY

INCLIBATOR O