COFFEA-CASA

A USER’S PERSPECTIVE

Presented By: Mat Adamec (Nebraska)

Contributors: Garhan Attebury, Ken Bloom,
Carl Lundstedt, Oksana Shadura, John
Thiltges, Andrew Wightman (Nebraska);
Brian Bockelman (Morgridge Institute)




What is Coffea?

is designed for columnar

analysis — think NumPy, not loops.

arrays serve as the
foundation of Coffea and handle
jagged data structures.

I
|
\

Event loop

———————————————— — ——

Image courtesy of Nick Smith, ACAT 2021.

———————————— —— —— ————— —— — —— —

m

I

00000000

=

Columnar


https://coffeateam.github.io/coffea/
https://awkward-array.readthedocs.io/en/latest/

What is Coffea?

Coffea analyses are written in a
“Processor” class. This is where
analysis is done.

The Processor class gets deployed
on an executor, which chunks up
input data and feeds it in.

Coffea has several executors.
Coffea-Casa uses

class Processor{processor.ProcessordBC):
def __init_ (self):
MET axis = hist.Bin("MET", "MET [GeV]", 58, @, 16@)

self._accumulator = processor.dict_accumulator({
"MET": hist.Hist({"Counts", MET_axis),
iy

@property
def accumulator(self):
return self._ accumulator

def process(self, events):
output = self.accumulator.identity()

MET = events.MET.pt

output[ "MET"].fil1(MET=MET)
return output

def postprocess(self, accumulator):
return accumulator

run = processor.Runner(executor=processor.FuturesExecutor(),
schema=schemas.NanocAODSchema,

)

output = run(fileset, "Events", processor_instance=Processor())

define histograms

process() runs per-chunk

columnar selection of relevant data

fill histograms

define an executor; Futures is for local runs!

run the processor, results go to output

ROOT files map

Parquet files —}

Image courtesy of Nick Smith, ACAT 2021.

reduce  Histograms

—} Event ID lists



https://www.dask.org/get-started

Let’s run an example!




Barriers to Coffea

* Learning a new analysis syntax.
* Coffea can make analysis code simpler and more readable — but it is different!

*Environment setup — especially configuring your own Jupyter Notebook

* Even when set up, locally-hosted Jupyter Notebooks can run into disconnection issues. This isn’t great
for long analyses.

*Working out deployment on various executors
* Running locally works, but it’s the least efficient solution.



Barriers to Coffea

* Learning a new analysis syntax.
* Coffea can make analysis code simpler and more readable — but it is different!

*Environment setup — especially configuring your own Jupyter Notebook

* Even when set up, locally-hosted Jupyter Notebooks can run into disconnection issues. This isn’t great
for long analyses.

*Working out deployment on various executors
* Running locally works, but it’s the least efficient solution.

Coffea-Casa addresses these two barriers!
(...but you still have to learn coffea)



Core Features of Coffea-Casa

* Coffea-Casa uses JupyterLab to bring Jupyter Notebooks to the cloud
* Fewer worries about network stability while running long analyses!

* Tokens give access to CMS data without certificate set-up

* Just replace the remote root filepath’s redirector with xcache:
* root://xrootd.unl.edu//... » root://xcache//...

* There is an opendata instance for those outside of CMS; UChicago has an ATLAS instance.

* Dask executor runs out of the box
 Just point to the scheduler that lives in every coffea-casa instance!

run = processor.Runner(executor=processor.FuturesExecutor(), run = processor.Runner(executor=processor.DaskExecutor(client=Client("tls://localhost:8786")),
schema=schemas .NanoAODSchema, schema=schemas . NanoAODEchema,

zavemetrics=True savemetrics=True

J )


https://coffea-opendata.casa/
https://coffea.af.uchicago.edu/

QOL Features of Coffea-Casa

* xcache integration means your files will be cached and future analysis runs retrieve data faster

* Git integration in the Ul
* Your analysis isn’t “tied” to coffea-casa. Bring an existing coffea analysis over with minimal changes!

* You can still access Git from the terminal if you want.

* ServiceX can be used on Coffea-Casa to deliver only the columns of data you’re interested in



https://servicex.readthedocs.io/en/latest/

Let’s take a look!



https://coffea.casa/

Ways to Improve

« Still in early stages; unexpected issues can arise
* In my experience, the coffea-casa dev team has been great about resolving these in the past.

* Dependency management is a mess, mainly because solutions vary by use case

* The solution for a pip-able dependency is not the solution for a local dependency in the analysis
directory is not the solution for a local dependency in a different directory.

* \We’'ve wrestled with this for a while. It’s uncertain when or how this will all be unified.

* There’s always a need for more workers and resources



Want to Jump Right In?

* Documentation
* Awkward (awkward-array.readthedocs.io/)

* Coffea (https://coffeateam.github.io/coffea/)
» Coffea-Casa (https://coffea-casa.readthedocs.io/en/latest/cc_user.html)
 ServiceX (https://iris-hep.org/projects/servicex)

* Tutorials
* Open either https://coffea.casa (for CMS) or https://coffea-opendata.casa (for opendata) to sign in.
 Clone the coffea-casa-tutorials repository. (https://github.com/CoffeaTeam/coffea-casa-tutorials.git)
e See the readme for how to navigate its examples!



https://awkward-array.readthedocs.io/en/latest/
https://coffeateam.github.io/coffea/
https://coffea-casa.readthedocs.io/en/latest/cc_user.html
https://iris-hep.org/projects/servicex
https://coffea.casa/
https://coffea-opendata.casa/
https://github.com/CoffeaTeam/coffea-casa-tutorials
https://github.com/CoffeaTeam/coffea-casa-tutorials.git

