
CernVM-FS Profiling

Razvan-Nicolae Virtan

Supervisors: Radu Popescu, Jakob Blomer

1

About CernVM-FS (CVMFS)

• created and optimized to deliver scientific software stacks to a distributed
compute infrastructure

• offers a file system interface for software repositories
[razvan@~]$ cat /cvmfs/atlas.cern.ch/repo/test # new cvmfs process created on local system

Classic scenario

(i.e. ext4)

2

CVMFS

Why profiling?

3

Benchmark scenario:

• Multi core system

• Cold Cache

• Multiple processes, attempting to access different data from the same repo (e. g. different jobs using
different software versions)

Performance on a synthetic benchmark:

CVMFS Local filesystem

1.38 GB for 1 min 3.97 GB for 1 min

CVMFS Profiling Goals

1. Develop a general set of tools & procedures for analyzing CVMFS
performance

2. Apply these tools on some known benchmarks and spot possible
bottlenecks benchmark

I / O
bounded?

CVMFS
bounded?

YES

NO

NO

…..........

YES

4

I / O bounded? New tool: avg_cache_time.sh

COLD CACHE
+ Disk Cache

WARM CACHE
+ Disk Cache

+ Kernel file system
buffers

HOT CACHE

cvmfs_config umountrm -r /var/lib/cvmfs/shared

$./profiling_tools/avg_cache_time.sh --rounds 2 ./tensorflow_benchmark.sh

Cache_Type Real Avg (s) User Avg(s) Sys Avg(s)
cold 25.560 10.639 1.282
warm 12.924 10.359 1.183
hot 11.690 10.051 0.959

Cache_Type CPU BLOCKED
cold 0.399 0.601
warm 0.893 0.107
hot 0.942 0.058

Compare Case Real Time User Time Sys Time
cold / hot 2.192 1.058 1.337
cold / warm 1.992 1.027 1.082
warm / hot 1.106 1.031 1.233

5

CVMFS bounded? cvmfs_talk

• How much of the blocked time is actually spent in CVMFS?

• Newly added counter to the set of cvmfs internal profiling counters

• Measure time spent in cvmfs callbacks and calculate the total

TCallbacks / T Blocked

$ cvmfs_talk -i unpacked.cern.ch internal affairs

….

Total Time In Callbacks = 34945ms

….

6

Where is the bottleneck? New tool: generate_flamegraphs.sh

• Method 1: exhaustive ON / OFF CPU analysis using flamegraphs

$./profiling_tools/generate_flamegraphs.sh --oncpu --dwarf --benchmark lhcb_benchmark.sh --cache hot

7

Where is the bottleneck? cvmfs_talk
• Flamegraphs are inaccurate / expensive and can fail on multi-threaded

scenarios.

• Method 2:
• add more timers in the CVMFS code, in places that can become bottlenecks
• generate partial flamegraphs internally, for relevant parts of the CVMFS code

=> New timers interface in CVMFS

8

Timer Requirements

9

• The same timer, reached from two different call stacks, needs
different records.

TimerTree{} class – singleton, only initialization + reporting

Timer implementation

10

Timers Map + last_started_timer

timer_path = (last_started_timer->timer_path << 8) + timer_id; MAX 256 timers and 8 timers in a call trace

Timer{} Timer{} Timer{}

• timer_id
• timer_path

• parent
• children_timers
• total_time

Map key

RAII timer interface
• TimerGuard is a wrapper object for the Timer backend

11

TimerGuard() ~TimerGuard()

• search / add timer to map

• record t0

• compute dt

• add dt to the total time

cvmfs_open() {
TimerGuard timer_guard("cvmfs_open()", CVMFS_OPEN_TIMER, ...);
…...

}

…...
{

TimerGuard timer_guard(...);
retval = DecompressZStream2Sink(…);
if (retval == zlib::kStreamDataError) {

…...
}

}
…..

• Some usage examples:

12

Output example

Synchronization issues
• 2 threads attempting to create the same timer

13

• One lock associated for the whole map

• 2 threads attempting to modify the same timer

• timer_id
• timer_path
• parent
• children_timers
• total_time atomic

• Each thread needs it's own last_started_timer
• Put last_started_timer in TLS

14

Benchmark scenario:

• Multi core system

• Cold Cache

• Multiple processes, attempting to access different data from the same repo (e. g. different jobs using
different software versions)

benchmark

libfuse

MainDownload

request + poll() decompress + write

cvmfs_open() cvmfs_open() cvmfs_open()

libfuse can spawn
multiple threads

15

The reason behind the bottleneck

P0 P0 P0

P0

P1

P0 P1 P0

P1

P0

P1

Pn

P0

P1

Pn…...

Network Waiting Decompression Waiting Process out of blocked state

P0 P1 Pn…...

Processes queuing for decompression

time

16

Conclusions

• Profiling tools are essential for further improvements in CVMFS performance.

• We developed external tools for the first steps of the analysis.

• We developed internal timers that can offer an in-depth view on the possible

bottlenecks.

• We found that, by parallelizing the data decompression, we can improve performance

on multiple-processes / multiple-data scenarios.

• We are currently looking into a new benchmark, provided by the Alice experiment.

17

