Simulating ATLAS TileCal for Geant4 validation

Using 2017 SPS testbeam data of the ATLAS Tile Calorimeter (TileCal) for validation and regression testing of Geant4 with Geant Val

Stephan Lachnit (EP-SFT) Supervisors: Lorenzo Pezzotti (EP-SFT), Dmitri Konstantinov (EP-SFT)

Monday, 22nd August 2022

Goals of the project

- Develop a standalone Geant4 simulation of the ATLAS TileCal (hadronic calorimeter)
- Compare to 2017 SPS testbeam data from ATLAS [1]
- Interface simulation to Geant Val, the Geant4 validation testsuite (geant-val.cern.ch)
- Regression testing for the energy response and energy resolution
 - Test with different Geant4 versions and physics lists

Geant4 and Geant Val 6 GEANT4

- Geant4 widely used for simulating calorimeters
- Validation studies needed for systematic testing
- Geant Val is a validation framework for Geant4
 - Tool to ensure Geant4 is in agreement with experiments
 - Testbeams are the perfect benchmark for this

TileCal geometry

Fig.: TileCal in the detector [2] and testbeam setup with a $10\,{\rm GeV}$ muon traversing

Structure of a TileCal module

Fig.: TileCal schematic [3] (left) and geometry in the simulation [4] (right)

Coding aspects

- Needs to be run on different versions of Geant4, going back as far as version 10.4 from 2017
- Maintainable for reuse with future versions of Geant4 \rightarrow good documentation required
- Validation one of the most computationally heavy tasks: 300k events × [e^- , π^+ , K⁺, p^+] × [16, 18, 20, 30 GeV] × 4 PL × 5 G4 versions
 - Almost 100 million events \rightarrow parallised to 1280 threads with Geant Val + HTCondor
- Realistic simulation with detector effects, not just simulated energy deposit

Signal treatment during the event:

Digitization at the end of the event:

Example: U-shape correction

- Inefficiencies in tiles decreases amount of photons
- Depends on relative position of hit within tile
 - More photons collected if hit is closer to a readout fiber \rightarrow drops from 80% to 30%
- U-shape given by the combined effect of the two readout fibers located at the tile ends
- Taken from Athena [5]

Fig.: Correction for a single PMT [6]

Example: PMT response

- Time dependent response
- Signal stored in each step in array with time bins
- Convolution at end of event
- Implemented from scratch

```
auto ConvolutePMT = [](const std::array<double, ATLTileCalTBConstants::frames>& sdep) {
    constexpr auto pmt_response_size = ATLTileCalTBConstants::pmt_response.size();
    auto outvec = std::array<double, ATLTileCalTBConstants::frames>();
    for (std::size_t k = 0; k < outvec.size(); ++k) {
        double outsum = 0.;
        auto jmax = (k >= pmt_response_size) ? pmt_response_size - 1 : k;
        for (std::size_t j = 0; j <= jmax; ++j) {
            outsum += sdep.at(k - j) * ATLTileCalTBConstants::pmt_response.at(j);
        }
        outvec.at(k) = outsum;
        };
    };
};
</pre>
```


Example: PMT response

Fig.: PMT response for an 18 GeV electron (left) and pion (right)

🕅 🕅 G4

Analysis code

- Simulated and analysed data stored in ROOT files
- Using modular C++ design and modern ROOT RDataFrame
- Calibration of reconstructed energy using electron beam
- Extract energy response and energy resolution for hadron beams

Calibration at the EM-Scale

- Recalibration in each run using simulated electrons
- $C_{e-} = \text{Signal}/E_{\text{beam}}$ (roughly) constant for electrons
- $E^{\rm raw} = {\rm Signal}/C_{e-}$ reconstructed energy for hadrons
- Almost gaussian distribution of E^{raw}
- Energy response $R^{E^{\rm raw}} = \langle E^{\rm raw} \rangle / E_{\rm beam}$
- Energy resolution $R^{\sigma^{\rm raw}}=\sigma^{E^{\rm raw}}/E_{\rm beam}$

Signal EM-Scale Protons 30 GeV

Fig.: Example of E^{raw} distribution

FTFP_BERT regression testing

Fig.: Version comparison for the FTFP_BERT physics list with pions

Geant4 11.0 physics list comparison

Fig.: Physics list comparison for version 11.0.p02 with pions

Particle response comparison

Fig.: Energy response for different particle beams

Current State

- Code hosted on GitHub (github.com/lopezzot/ATLTileCalTB)
- Simulation results for Geant4 10.4, 10.5, 10.6, 10.7 and 11.0 with FTFP_BERT, QGSP_BERT, FTFP_BERT_ATL and FTFP_INCLXX
- Final results published on geant-val.cern.ch
- Essentially feature complete

	(LEINCOULLE)						
> Code 💿	Issues 🖞 Pull	requests Ac	tions	Projects			
Releases	Tags		Q Find	a release			
sterday							
lopezzot 🛇	v1.0 -0- c621665	Ocompare *					
ATLTI	eCaITB	1.0					
The first relea	ase of ATLTIIeCaIT	B from @lopezzo	t and @	stephanlach	nit		
It includes:							
 Realistic 	test-beam geome	try					
 Look up (table to navigate th	nrough calorimete	r cells				
 LOOK up 	eatment: Birks' Lav	v, photo-statistica	l smeari	ng, U-shape c	orrectio		
 Signal tre and time 	-stamp recording						
 Signal tre and time PMT resp 	-stamp recording ponse simulation a	ind electronic noi	10				
 Signal tre and time PMT resp ROOT data 	i-stamp recording ponse simulation a ata persistency an	ind electronic noi d analysis	10				
 Signal tre and time PMT resp ROOT date Geant-Value 	-stamp recording ponse simulation a ata persistency an al integration	ind electronic noi d analysis	10				
Signal tre and time PMT resi ROOT ds Geant-Ve	-stamp recording ponse simulation a ata persistency an al integration DFS	ind electronic noi d analysis	10				

Conclusion

- Realistic standalone simulation of the ATLAS TileCal developed
- Extensive documentation available at lopezzot.github.io/ATLTileCalTB
- Successfully added a new test to Geant Val
- Significant changes in energy response and resolution in version 10.5 and 10.6
 → consistent with previous findings [7]

References

- Jalal Abdallah et al. "Study of energy response and resolution of the ATLAS Tile Calorimeter to hadrons of energies from 16 to 30 GeV". In: *Eur. Phys. J. C* 81.6 (2021), p. 549. DOI: 10.1140/epjc/s10052-021-09292-5. arXiv: 2102.04088 [physics.ins-det].
- [2] Tamar Zakareishvili. "Studies of the response of the ATLAS Tile Calorimeter to beams of particles at the CERN test beams facility". In: (2019-01). URL: https://cds.cern.ch/record/2654416.
- [3] The ATLAS Collaboration et al. "The ATLAS Experiment at the CERN Large Hadron Collider". In: Journal of Instrumentation 3.08 (2008-08), S08003–S08003. DOI: 10.1088/1748-0221/3/08/s08003. URL: https://doi.org/10.1088/1748-0221/3/08/s08003.
- [4] Lorenzo Pezzotti. Towards a Geant4 simulation of the ATLAS TileCal test beams. 2022-06. URL: https://cernbox.cern.ch/index.php/s/gJhXVx13EuHUIPY.
- [5] ATLAS Collaboration. Athena. DOI: 10.5281/zenodo.2641996. URL: https://gitlab.cern.ch/atlas/athena.
- [6] A Durglishvili et al. Determination of the cells response as a function of the tracks impact point coordinates. Tech. rep. Geneva: CERN, 2014-09. URL: https://cds.cern.ch/record/1754960.
- Lorenzo Pezzotti. Including calorimeter test-beams into geant-val. 2022-05. URL: https://indico.cern.ch/event/847884/contributions/4833199/.

Cell layout

3 D2		D	D1		Г	D0		D	D-1		D-2	D-2		D-3						
8	C7	C6	с	05 (C4	C3	C2		С1	C-1	C-2	2 C	-3 (C-4	C-5	C-6	Ċ	·7 C	:-8	
9	в8	В7	В6	В5	В4	в	3 В	12	В1	B-1	в-2	в-3	в-4	в-	5 В.	-6 B	-7	3-8	B-9	
.10	A9	A8	A7	A6	A5	A4	A3	A2	A1	A-1	A-2	A-3	A-4	A-5	A-6	A-7	A-8	A-9	A-10	
									D-4 -10		D-5					D-6				
										В	-11	B-1	2	B-13		B-14		B-15		
										A٠	-12	-13	A-:	14	A-1	5	A-16	;		

Fig.: Cell layout (from zenis.dnp.fmph.uniba.sk/tile.html)

Other validation work using testbeam data

- ATLAS hadronic end-cap calorimeter (lopezzot.github.io/ATLHECTB)
 - same $10\,\%$ to $20\,\%$ lower energy resolution found
- CALICE SiW calorimeter (lopezzot.github.io/CALICESiWTB)

