

Highlights from ATLAS LISHEP 2023: 5-10 March 2023 UERJ, Rio de Janeiro, Brasil

Marisilvia Donadelli, on behalf of the ATLAS Collaboration University of Sao Paulo

A Toroidal LHC ApparatuS

• layered detector surrounding the interaction point: central tracker inside of a solenoid, calorimeters and an independent muon spectrometer with superconducting toroids

- fast triggering on interesting signatures
 - precise reconstruction of
 - collision vertices
 - photons and electrons
 - muons
 - taus
 - jets
 - missing transverse momentum
 - identification of heavy flavour jets

Performance with Run-2 data set

ATLAS Run 2 pp data set • Run 2 (2015-2018) recorded after Run 1 data set (2010-2012)

- 95.6 % data quality efficiency

• most results in this talk: 139 fb⁻¹ data for physics analysis at $\sqrt{s} = 13$ TeV

Final luminosity for Run 2 pp

- based on complimentary measurements from LUCID, Inner **Detector and Calorimeters**
- absolute calibration of LUCID from dedicated vdM scans each year
- final result for standard high pileup sample L_{int} = 140.1±1.2 fb⁻¹
- unprecedented uncertainty of **0.83%**
- 0.9% achieved by second-generation ISR experiments

arXiv:2212.09379 (Submitted to: EPJC)

- conditions
- reconstructed objects

M.Donadelli

Run 2 flavour tagging

arXiv:2211.16345 (Submitted to: EPJC)

MV2: BDT combines the outputs of low-level taggers IP3D, SV1 and JetFitter

DL1r : Deep feed-forward neural network uses the same inputs and multi-dimensional outputs - P(light), P(c-jet), P(b-jet)

DL1r substantially **outperforms** all **low-level taggers** across the ε_b range!

Per-b-jet tagging efficiency increased $70\% \rightarrow 77\%$

(HH analyses example: x 2 or 4 b-jets per event)

M.Donadelli

Highlights from ATLAS - LISHEP 2023

7

Tau identification

RNN

employs information from reconstructed charged-particle tracks and clusters of energy in the calorimeter associated to $au_{had-vis}$ candidates as well as high-level discriminating variables

Factor 2 performance improvement compared to BDT ID

Per-tau efficiency increased: 1-prong: 75% → 85% 3-prong: 60% → 75%

rejection

Fake

M.Donadelli

ATL-PHYS-PUB-2019-033

Run-2 Physics Highlights

Tuesday, 16:40 Standard Model and Top results from ATLAS - Carlos Alberto Gottardo Tuesday, 17:00 Heavy Flavor results from ATLAS - Markus Cristinziani Tuesday, 17:20 Search for BSM Physics in ATLAS - Rafael Coelho Lopes de Sá 9 M.Donadelli

Summary of ATLAS 13 TeV using the full Run 2 pp dataset

- SM
- Top
- B physics
- Higgs
- HDBS
- Exotics
- Supersymmetry

Standard Model Total Production Cross Section Measurements

M.Donadelli

Status: February 2022

ATL-PHYS-PUB-2022-009

Total pp cross-section

- Differential $d\sigma/dt$ pp \rightarrow elastic cross section
 - ALFA subdector : measure scattered protons with detectors located in roman pots ~240 m from IP
 - special run (~340 μ b⁻¹) with β^* optics = 2.5 km
 - measure Mandelstam 't' distribution
 - luminosity calibration from vdM scans
- From precise $d\sigma/dt$:
 - ρ (real/imaginary part of elastic-scattering amplitude for $t \rightarrow 0$)

$\rho = 0.098 \pm 0.011$

 $\sigma_{total} = 104.7 \pm 1.1 \text{ mb}$ (from optical theorem)

M.Donadelli

Observation of WWW production

- two channels: WWW \rightarrow 3|3v and WWW→ 2l2vjj
- dedicated CR for background modelling, MVA analysis to enhance signal

- 3l+v decay mode
- in 4 categories of lcos θ^*_{W} |, lcos θ^*_{IZ} |

M.Donadelli

Top pair production cross section at 5.02 TeV arXiv:2207.01353 (Submitted to JHEP)

Ge/

Events

10⁻

10╞

- 260 pb⁻¹ dataset recorded
- done in dilepton and single-lepton final states + combination
- BDT used in single-lepton channel

• good agreement with expectations to 4% precision

measurement helps constrain PDFs

 $\sigma_{tt(measured)} = 67.5 \pm 0.9$ (stat.) ± 2.3 (syst.) ± 1.1 (lumi) ± 0.2 (beam) pb

 $\sigma_{tt(predicted)} = 68.2 \pm 4.8 (PDF + \alpha_S)^{+1.9} - 2.3 (scale) pb$

Tuesday, 16:40 Standard Model and Top results from ATLAS - Carlos Alberto Gottardo 14 Highlights from ATLAS - LISHEP 2023

- NN used to separate signal and background
- profile likelihood fit used to extract cross-section with free floating parameters for background

Tuesday, 16:40 Standard Model and Top results from ATLAS - Carlos Alberto Gottardo 15 M.Donadelli

 $\sigma_{tyq} = 580 \pm 19 \text{ (stat)} \pm 63 \text{ (syst) fb}$

$$\sigma_{t\gamma q \text{ (prediction)}} = 406 + 25_{-32} \text{ fb}$$

Observed (expected) significance: 9.1σ (6.7 σ)

Observation of di-charmonium in 4µ states

- motivated by tetraquarks, in two channels
- find prompt 4μ events with $p_T > 3,3,4,4$ GeV
- $\Delta R < 0.25$ between charmonia
- background from single parton and double parton scattering

M.Donadelli

 $\rightarrow T_{cc\bar{c}\bar{c}} \rightarrow J/\psi J/\psi \rightarrow 4\mu$

 $T_{cc\bar{c}\bar{c}} \rightarrow J/\psi \,\psi(2S) \rightarrow 4\mu$

ATLAS-CONF-2022-040

analogous to LHCb, broad structure at lower mass and a resonance around 6.9 GeV are observed

$H \rightarrow 4I$: precise mass measurement

- improved momentum-scale calibration for muons

Table 2: Largest contributions to the systematic uncertainty of m_H .

Systematic Uncertainty	Contribution [MeV]		
Muon momentum scale	±28		
Electron energy scale	±19		
Signal-process theory	±14		

arXiv:2207.00320 (Submitted to: Physics Letters B)

Combination with 7 and 8 TeV result

 $m_H = 124.94 \pm 0.17$ (stat.) ± 0.03 (syst.) GeV

Evidence of off-shell Higgs ATLAS-CONF-2022-068

- predicted Higgs width of 4.1 MeV much smaller than the detector resolution
- measure the Higgs boson total width by exploiting the ratio between on-shell $\sigma_{gg \to H \to VV}^{\text{off-shell}} \sim \frac{g_{ggH}^2 g_{HZZ}^2}{m_{ZZ}^2}$ and off-shell productions
- combination of ZZ \rightarrow 2l 2v and ZZ \rightarrow 4l offers highest sensitivity, exploiting the independence of off-shell cross section on Γ_{H}

M.Donadelli

$\frac{g_{ggH}^2 g_{HZZ}^2}{m_H \Gamma_H}$ $\sigma^{\text{on-shell}}_{gg \rightarrow H \rightarrow VV} \sim$

$$d\Gamma_{H\to\tau^+\tau^-} \approx 1 - b(E_+)b(E_-)\frac{\pi^2}{16}\cos(\varphi_{CP}^* - 2\phi_{\tau})$$

STXS $H \rightarrow \gamma \gamma$

- within the Simplified Template Cross-Sections framework (partitioned by production process as well as by kinematic and event properties)
- selected events classified into 101 analysis categories based on multi-class BDT

 $\mu = 1.04^{+0.10} - 0.09 = 1.04 \pm 0.06$ (stat.) $^{+0.06} - 0.05$ (theory syst.) $^{+0.05} - 0.04$ (exp. syst.)

Highlights from ATLAS - LISHEP 2023

20

(EFI)

arXiv:2207.00348 (Submitted to: JHEP)

- 34 Wilson coefficients considered (out of 60)
 - dimmension-6 operators with significant impact on at least one STXS region
- coefficients measured individually while setting all the others to 0

all coefficients compatible with 0 (SM)

Search for $H \rightarrow cc$

Eur. Phys. J. C 82 (2022) 717

- targeting VH(\rightarrow cc) with 3 channels: ZH→vvcc, WH→lvcc, ZH→llcc
- analysis strategy validated by simultaneous measurement of diboson processes $(VZ \rightarrow cc, ZW \rightarrow cq, q is down-quark)$
- flavour-tagging: identification of c-jets and orthogonality with VH(bb)
 - c-tagging + b-veto with efficiency WPs $(DL1_{c}, MV2)$
- simultaneous fit of SRs+CRs using m_{cc} for signal extraction + diboson analysis as cross-check
- uncertainty dominated by V+jets modelling and data statistics

M.Donadelli

In(I

0 lepton

1 lepton

2 lepton

obs. (exp.) $(W/Z)Z \rightarrow cc 2.6 \sigma (2.2 \sigma)$ $(W/Z)W \rightarrow cq 3.8 \sigma (4.6 \sigma)$ $(W/Z)H\rightarrow cc$ 26 X SM (31 X SM)

Measurement of the VH ($H \rightarrow WW^*$) cross-section

and H→WW*→lvjj decays

M.Donadelli

Higgs highlights: 10 years after discovery

- a large number of Higgs production and decay modes have been established
 - ttH with many channels (discovery in 2018), also closing on tH ($H \rightarrow \gamma \gamma$)
- excellent agreement with theory predictions

 $= 1.05 \pm 0.03$ (stat.) ± 0.03 (exp.) ± 0.04 (sig.th.) ± 0.04 (bkg.th.)

• ATLAS Run 2 results comparable to **2014 HL-LHC projections**!

M.Donadelli

Nature 607, pages 52-59 (2022)

24

ATLAS searches

M.Donadelli

Search for Higgs boson pair production

• negative interference between main contributions: very small production cross-section $\sigma_{ggF} = 31.05 \text{ fb} (~1000 \text{ s})$ times smaller than that of single H)

M.Donadelli

• probe Higgs self-interaction (λ_{HHH}) and Higgs potential

 $\kappa_{\lambda} \equiv \lambda_{HHH} / \lambda^{SM}_{HHH}$

second leading production mode $\sigma_{VBF} = 1.73$ fb

Run: 339535 Event: 996385095 2017-10-31 00:02:20 CEST

M.Donadelli

$HH \rightarrow bb\gamma\gamma$

M.Donadelli

Run: 350013 Event: 1556168518 2018-05-11 01:39:26 CEST

HH →bbbb

HH combination

- bbbb, bbtt and bbyy

most stringent upper limit on HH production to date

arXiv:2211.0121 (Submitted to: Phys. Lett. B.)

• $bb\tau\tau$ most sensitive for κ_{λ} values close to the SM

• bbbb most sensitive to VBF production and variations of κ_{2V} 29 Highlights from ATLAS - LISHEP 2023

HH + H combination

sensitivity to κ_{λ} of single H through NLO EW

M.Donadelli

30

Exclusive H and Z decays into vector quarkonium + y

- alternative way to probe quark-Yukawa couplings distinct experimental signature (radiative decays)
- exclusive background: $\mu\mu\gamma$ events through DY, MC modelling
- inclusive background: dominant, mostly multi-jet and γ +jets, data-driven modelling

Tuesday, 17:20 Search for BSM Physics in ATLAS - Rafael Coelho Lopes de Sá

M.Donadelli

arXiv:2208.03122 (Submitted to: EPJC)

		95% CL upper limits					
		Branching fraction			$\sigma \times \mathcal{B}$		
V Decay		Higgs boson [10 ⁻⁴]		Z boson [10 ⁻⁶]		Higgs boson [fb]	Z bo
	channel	Expected	Observed	Expected	Observed	Observed	Ob
round –	$J/\psi \gamma$	$1.9^{+0.8}_{-0.5}$	2.1	$0.6^{+0.3}_{-0.2}$	1.2	12	
bund $=$ 1 1 × 10 ⁻³ $=$	$\psi(2S)\gamma$	$8.5^{+3.8}_{-2.4}$	10.9	$2.9^{+1.3}_{-0.8}$	2.3	61	1
$= 2.3 \times 10^{-6}$	$\Upsilon(1S) \gamma$	$2.8^{+1.3}_{-0.8}$	2.6	$1.5^{+0.6}_{-0.4}$	1.0	14	
	$\Upsilon(2S) \gamma$	$3.5^{+1.6}_{-1.0}$	4.4	$2.0^{+0.8}_{-0.6}$	1.2	24	
	$\Upsilon(3S) \gamma$	$3.1^{+1.4}_{-0.9}$	3.5	$1.9^{+0.8}_{-0.5}$	2.3	19	1
, , ,,, ♣ , , , ⊒							

search also for H and Z $\rightarrow \omega/K^* + \gamma$

arXiv:2301.09938 (Submitted to: Phys. Lett. B.)

Highlights from ATLAS - LISHEP 2023

250

.

300

Searches for extended scalar sector

Generic 2HDM

- search for new heavy scalars with flavour-violating decays
- couplings involving top quarks ρ_{tt}, ρ_{tc}, ρ_{tu}
- events categorised by lepton multiplicity, total lepton charge and decay topology

largest deviation 2.8 σ local for m_H = 1000 GeV: $\rho_{tt=}$ 0.32, ρ_{tc} = 0.05, ρ_{tu} = 0.85

M.Donadelli

couplings scans for heavy Higgs masses $200 \text{ GeV} < m_H < 1000 \text{ GeV}$

Highlights from ATLAS - LISHEP 2023

33

Heavy particles searches

ATLAS Heavy Particle Searches* - 95% CL Upper Exclusion Limits

Status: July 2022

	Model	l,
Extra dimensions	ADD $G_{KK} + g/q$ ADD non-resonant $\gamma\gamma$ ADD QBH ADD BH multijet RS1 $G_{KK} \rightarrow \gamma\gamma$ Bulk RS $G_{KK} \rightarrow WW/ZZ$ Bulk RS $G_{KK} \rightarrow WV \rightarrow \ell\nu qq$ Bulk RS $g_{KK} \rightarrow tt$ 2UED / RPP	0 e, µ 2 - - 2 - multi-ch 1 e 1 e 1 e
Gauge bosons	$\begin{array}{l} \operatorname{SSM} Z' \to \ell\ell \\ \operatorname{SSM} Z' \to \tau\tau \\ \operatorname{Leptophobic} Z' \to bb \\ \operatorname{Leptophobic} Z' \to tt \\ \operatorname{SSM} W' \to \ell\nu \\ \operatorname{SSM} W' \to \tau\nu \\ \operatorname{SSM} W' \to tb \\ \operatorname{HVT} W' \to WZ \to \ell\nu qq \text{ model} \\ \operatorname{HVT} W' \to WZ \to \ell\nu \ell'\ell' \text{ mod} \\ \operatorname{HVT} W' \to WH \to \ell\nu bb \text{ model} \\ \operatorname{HVT} Z' \to ZH \to \ell\ell/\nu\nu bb \text{ model} \\ \operatorname{HVT} Z' \to ZH \to \ell\ell/\nu\nu bb \text{ model} \\ \operatorname{LRSM} W_R \to \mu N_R \end{array}$	2 e 2 0 e 1 e 1 B 1 e 1 B 1 e 1 B 1 e 1 B 1 B 2 c 2,
CI	Cl qqqq Cl ℓℓqq Cl eebs Cl μμbs Cl tttt	2 e 2 2, ≥1 c
MD	Axial-vector med. (Dirac DM) Pseudo-scalar med. (Dirac DM) Vector med. Z'-2HDM (Dirac D Pseudo-scalar med. 2HDM+a	0 <i>e</i> , μ 0 <i>e</i> , μ M) 0 <i>e</i> multi-cł
р	Scalar LQ 1 st gen Scalar LQ 2 nd gen Scalar LQ 3 rd gen Scalar LQ 3 rd gen Scalar LQ 3 rd gen Scalar LQ 3 rd gen Vector LQ 3 rd gen	2 2, 0 <i>e</i> ≥2 <i>e</i> , μ 0 <i>e</i> , μ,
Vector-like fermions	$\begin{array}{l} VLQ \ TT \to Zt + X \\ VLQ \ BB \to Wt/Zb + X \\ VLQ \ T_{5/3} T_{5/3} T_{5/3} \to Wt + X \\ VLQ \ T \to Ht/Zt \\ VLQ \ T \to Ht/Zt \\ VLQ \ Y \to Wb \\ VLQ \ B \to Hb \\ VLL \ \tau' \to Z\tau/H\tau \end{array}$	2e/2µ/; multi-ch 2(SS)/2 1 e 1 e 0 e multi-ch
Excited fermions	Excited quark $q^* \rightarrow qg$ Excited quark $q^* \rightarrow q\gamma$ Excited quark $b^* \rightarrow bg$ Excited lepton ℓ^* Excited lepton ν^*	1 - 3 e 3 e,,
Other	Type III Seesaw LRSM Majorana v Higgs triplet $H^{\pm\pm} \rightarrow W^{\pm}W^{\pm}$ Higgs triplet $H^{\pm\pm} \rightarrow \ell\ell$ Higgs triplet $H^{\pm\pm} \rightarrow \ell\tau$ Multi-charged particles Magnetic monopoles	2,3,4 2, 2,3,4 e, 2,3,4 e, 3 e,
	$\sqrt{s} = 8 \text{ TeV}$	5 - 13 1

*Only a selection of the available mass limits on new states or phenomena is shown. †Small-radius (large-radius) jets are denoted by the letter j (J).

Tuesday, 17:20 Search for BSM Physics in ATLAS - Rafael Coelho Lopes de Sá 34

M.Donadelli

ATL-PHYS-PUB-2022-034

ATLAS Preliminary

 $\int \mathcal{L} dt = (3.6 - 139) \text{ fb}^{-1}$ $\sqrt{s} = 8, 13 \text{ TeV}$

Search for neutral heavy resonances in W+W- \rightarrow evµv

- search in wide mass range: 200 GeV < m_R < 6 TeV
- Higgs-like narrow width, Georgi-Machacek, radion in the bulk Randall-Sundrum model, spin-1 have vector triplet, spin-2 graviton
- m_T used for statistical analysis
- no significant excess over SM expectations

Model	Obs. limit [GeV]	Exp. limit $[GeV]$
Radion, ggF	1090	1190
Kaluza-Klein graviton, ggF	1340	1340
Kaluza-Klein graviton, VBF	500	500
HVT scenario A, qqA	2100	1890
HVT scenario B, qqA	2350	2130

ATLAS-CONF-2022-066

Model	Resonance spin	Production mode		
		ggF	qqA	VBF
NWA	Spin-0	х		х
GM				х
Radion		х		х
HVT	Spin-1		х	х
RS G_{KK}^*	Spin-2	Х		х

Highlights from ATLAS - LISHEP 2023

M.Donadelli
Search for H→invisible

q

q

H→invisible in VBF+MET **JHEP 08 (2022) 104**

- most sensitive channel among the five searches
- large $E_T^{miss} > 160 \text{ GeV}$
- 2 VBF jets not back-to-back in ϕ ($\Delta \phi_{ii} < 2$, to suppress multi-jet)
- veto events with e, μ , γ
- VBF topology for 2 leading jets
 - η^{j1} . $\eta^{j2} < 0$, $\Delta \eta_{ii} > 3.8$, $m_{ii} > 0.8$ TeV
- background estimation: V+jets from lepton CR
- 16 signal region bins defined in n_{jet} , E_T^{miss} , m_{ji} , $\Delta \phi_{jj}$

ℬ_{inv} < 0.15 (0.10 exp.) @ 95% CL

M.Donadelli

• In SM, branching ratio for Higgs invisible decay $(H \rightarrow ZZ \rightarrow 4v) \sim 0.1\%$

• If DM exists and in the right mass range, we may observe larger BR(H→inv) than SM prediction

Uncertainty Strona W Strong Z EW *Z* Other e-fakes μ -fakes Multijet • $H(B_{inv} = 0.15)$

$H \rightarrow invisible$ search combination

𝔅 (H→inv) < 0.107 (0.077) @ 95% CL obs (exp)

Analysis	Best fit $\mathcal{B}_{H \to \text{inv}}$	Observed 95% U.L.	Expected 95%
$\operatorname{Jet} +$	$-0.09\substack{+0.19\\-0.20}$	0.329	$0.383^{+0.157}_{-0.107}$
$VBF + + \gamma$	$0.04^{+0.17}_{-0.15}$	0.375	$0.346^{+0.151}_{-0.097}$
$t\bar{t}$ +	0.08 ± 0.15	0.376	$0.295\substack{+0.125\\-0.083}$
$Z(\rightarrow \ell \ell) +$	0.00 ± 0.09	0.185	$0.185_{-0.052}^{+0.078}$
VBF +	0.05 ± 0.05	0.145	$0.103_{-0.028}^{+0.041}$
Run 2 Comb.	0.04 ± 0.04	0.113	$0.080^{+0.031}_{-0.022}$
Run 1 Comb.	$-0.02^{+0.14}_{-0.13}$	0.252	$0.265\substack{+0.105\\-0.074}$
Run $1+2$ Comb.	0.04 ± 0.04	0.107	$0.077^{+0.030}_{-0.022}$

Highlights from ATLAS - LISHEP 2023

39

U.L.

Long-lived particles searches

ATLAS Long-lived Particle Searches* - 95% CL Exclusion

Status: July 2022

	Model	Signatu
	RPV ${ ilde t} o \mu q$	displaced vtx -
	$RPV{ ilde\chi}^0_1 o eev/e\mu v/\mu \mu$	v displaced lept
	$\operatorname{GGM} \tilde{\chi}^0_1 \to Z \tilde{G}$	displaced dir
	GMSB	non-pointing or c
	GMSB $\tilde{\ell} \to \ell \tilde{G}$	displaced le
×	GMSB $\tilde{\tau} \rightarrow \tau \tilde{G}$	displaced le
SUS	AMSB $pp ightarrow { ilde\chi_1^\pm} { ilde\chi_1^0}, { ilde\chi_1^\pm} { ilde\chi_1^0}$	$\tilde{\chi}_1^-$ disappearing
	AMSB $pp ightarrow { ilde\chi_1^\pm} { ilde\chi_1^0}, { ilde\chi_1^\pm} { ilde\chi_1^0}$	$\tilde{\chi}_1^-$ large pixel d
	Stealth SUSY	2 MS verti
	Split SUSY	large pixel d
	Split SUSY	displaced vtx -
	Split SUSY	0 ℓ, 2 – 6 jets -
		0 MC vorti
	$H \rightarrow s s$	2 MS vertio
)%	$H \rightarrow s s$	2 IOW-EIMF track
= 1(VH with $H \rightarrow ss \rightarrow bb$	$bb 2\ell + 2 \text{ displ. v}$
BR	FRVZ $H \rightarrow 2\gamma_d + X$	2 $\mu-$ jets
ggs	FRVZ $H \rightarrow 4\gamma_d + X$	2 μ –jets
Ĩ	$H \rightarrow Z_d Z_d$	displaced dir
	$H \rightarrow ZZ_d$	2 e, μ + low-EMF t
	$\Phi(200 \text{ GeV}) \rightarrow s s$	low-EMF trk-less j
alar	$\Phi(600 \text{ GeV}) \rightarrow s s$	low-EMF trk-less j
Sc	$\Phi(1 \text{ TeV}) \rightarrow s s$	low-EMF trk-less j
_		displaced vtv (uu
	$VV \rightarrow IVL, IV \rightarrow UV$	
٦L	$vv \rightarrow Nt, N \rightarrow \ell\ell v$	displaced vix ($\mu\mu$,)
H	$W o N\ell$, $N o \ell\ell v$	displaced vtx ($\mu\mu$,,
	$W \to N\ell, N \to \ell\ell\nu$	displaced vtx ($\mu\mu$,

√s = 13 TeV partial data

*Only a selection of the available lifetime limits is shown. 0.001

Tuesday, 17:20 Search for BSM Physics in ATLAS - Rafael Coelho Lopes de Sá

M.Donadelli

ATL-PHYS-PUB-2022-034

ATLAS Preliminary

 $\int \mathcal{L} dt = (32.8 - 139) \text{ fb}^{-1}$ $\sqrt{s} = 13 \text{ TeV}$

40

Search for long-lived charginos: disappearing track

- a chargino directly interacts with the detector material: **a track**
- decays in the middle leaving a LSP and a non-reconstructable soft pion: disappearing
- addition of the inner-most IBL layer (2014): **pixel-only-track**, pushing the sensitivity towards short lifetime
- requires a high p_T ISR jet + recoiling E_T^{miss} to trigger events

- tracklets", fully data-driven estimation
- thanks to the closer proximity of the innermost pixel layer to beam: ATLAS signals

obs limit excludes chargino masses up to 660 GeV

M.Donadelli

Eur. Phys. J. C 82 (2022) 606

bkg dominated by combinatorial "fake

offers best sensitivity to shorter life-time

• \geq 3 b-jets + 0/1 lepton + E_T^{miss}

- DNN in event selection:
 - input: 4 vectors of jets and leptons, E_T^{miss}
 - m(\tilde{g}) and m($\tilde{\chi}_1^0$) added as parameters
- Interpretation also for 3 mixed decay modes

•
$$\tilde{g} \rightarrow t t \tilde{\chi}_1^0$$
, $b b \tilde{\chi}_1^0$, or $t b \tilde{\chi}_1^{\pm}$

SUSY Summary Plots

gluino masses < 2.44 (2.35) TeV excluded @ 95%CL

M.Donadelli

Run-3 Highlights

Phase-I Upgrade

MUON NEW SMALL WHEELS (NSW)

Installed new muon detectors with precision tracking and muon selection capabilities. Key preparation for the HL-LHC.

- all Phase-I systems have been integrated in data-taking
- recently with HLT chains seeded by Phase-I items

TRIGGER AND DATA ACQUISITION SYSTEM (TDAQ)

Upgraded hardware and software allowing the trigger to spot a wider range of collision events while maintaining the same acceptance rate.

ATLAS DETECTOR LS2 UPGRADES

NEW READOUT SYSTEM FOR THE NSWs

The NSW system includes two million micromega readout channels and 350 000 small strip thin-gap chambers (sTGC) electronic readout channels.

LIQUID ARGON CALORIMETER

New electronics boards installed, increasing the granularity of signals used in event selection and improving trigger performance at higher luminosity.

NEW MUON CHAMBERS IN THE CENTRE OF ATLAS

Installed small monitored drift tube (sMDT) detectors alongside a new generation of resistive plate champer (RPC) detectors, extending the trigger coverage in preparation for the HL-LHC.

ATLAS FORWARD PROTON (AFP)

Re-designed AFP time-of-flight detector, allowing insertion into the LHC beamline with a new "out-ofvacuum" solution.

Performance results with early 13.6 TeV data

Candidate Run 3 event display of a pair of top quarks decaying the ATLAS detector. This event was recorded on 18 July 2022 when stable beams of protons at the energy of 6.8 TeV per beam were delivered by the LHC. The display shows charged particle tracks reconstructed in the inner detector (orange lines), an electron track (green line), a muon track (red line) as well as the energy deposits in the LAr (green and cyan blocks) and Tile (yellow/orange blocks) calorimeters. The event contains two jets that have passed b-tagging requirements and these are delineated with cyan cones. The lower-left-hand view shows the same event in the transverse plane, highlighting the direction of the missing transverse momentum (dashed white line). (Image: ATLAS Collaboration/CERN)

Measurement of tt/Z cross-section ratio at 13.6 TeV

ATLAS-CONF-2022-070

- 1.2 fb⁻¹ of data (Aug 2022)
- eµ channel split into 1 or 2 b-tagged jets
- post-fit event counts in signal and bkg regions

M.Donadelli

• absolute cross-section limited by large uncertainties on the preliminary luminosity estimate

• 4.7% precision for the ratio of the cross-sections

measured values consistent with SM PDF4LHC21 PDF set

 $\sigma_{tt(measured)} = 830 \pm 12$ (stat.) ± 27 (syst.) ± 86 (lumi) pb

 $\sigma_{Z \rightarrow II} = 2075 \pm 2 \text{ (stat.)} \pm 98 \text{ (syst.)} \pm 199 \text{ (lumi) pb, for } m_{II} > 40 \text{ GeV}$

 $R_{tt/Z} = 0.400 \pm 0.006$ (stat.) ± 0.017 (syst.) ± 0.005 (lumi)

Phase-II Upgrade for HL-LHC

The future

LHC / HL-LHC Plan

- Run 2 brought 140 fb⁻¹ @ 13 TeV
- Run 3 may bring 300 fb⁻¹ @ 13.6 TeV

M.Donadelli

• HL-LHC will bring an order of magnitude more!

49

and the challenge ...

ATLAS Phase-II Upgrade

lTk	ITk Silicon Pixel TDR
ITk	ITk Silicon Strip TDR
LAr	LAr Calorimeter TDR
HGTD	High-Granularity Timing Detector TDR
Tile	<u>Tile Calorimeter TDR</u>
Muon	Muon Spectrometer TDR
TDAQ	TDAQ System TDR
SW&C	Computing CDR

New Muon Chambers

Inner barrel region with new RPC and sMDT detectors

High Granularity Timing Detector (HGTD)

- Forward region (2.4 < $|\eta|$ < 4.0)
- Low-Gain Avalanche Detectors (LGAD)
- with 30 ps track resolution

HGTD sensors | ATLAS Phase-2 Upgrade

improved muon coverage

new High-Granularity Timing Detector (HGTD)

M.Donadelli

new and upgraded forward and luminosity detectors

Upgraded Trigger and Data Acquisition system

Level-0 Trigger at 1 MHz

Improved High-Level Trigger (150 kHz full-scan tracking)

trigger and DAQ increased readout rates

Additional small upgrades

Luminosity detectors (1% precision goal) HL-ZDC

Electronics Upgrades

LAr Calorimeter Tile Calorimeter Muon system

New Inner Tracking Detector (ITk)

ITk – the new all-Si tracker

All silicon, up to $|\eta| = 4$

Example HL-LHC expectations exceeded

ATL-PHYS-PUB-2015-046

• HH->bbττ projections in 2015:

..." we can project an exclusion at 95% Confidence Level of BSM HH production with $\lambda_{HHH}/\lambda_{SM} \leq -4$ and **λ**_{HHH}/**λ**_{SM} ≥ 12 ″

- HH->bbττ Run 2 results achieved later with 5% of that dataset, already exceed that
- improved τ_{had} and b-jet reconstruction and identification techniques, new triggers and a number of analysis-level improvements

Concluding remarks

- ATLAS performed exceptionally well during Run-2
 - SM measurements over a wide range of phase space
 - reaching 5-10% constraints on main Higgs boson couplings
 - di-Higgs sensitivity approaching fast
 - wide program for BSM searches
 - analysis techniques have undergone a tremendous evolution
 - use of ML on physics objects and analyses design, improvements in signal and background modelling
- Many papers yet to come with the Run-2 dataset, with Run-3 data already on us
- And... preparation towards HL-LHC!!!

Thank you for your attention!

Additional slides

M.Donadelli

Run 2 flavour tagging

arXiv:2211.16345 (Submitted to: EPJC)

Variable	Description	SVKine	JFKine	DL1
p_{T}	Jet $p_{\rm T}$	\checkmark	\checkmark	\checkmark
η	Jet $ \eta $	\checkmark	\checkmark	\checkmark
$g(P_b/P_{light})$	Likelihood ratio of the <i>b</i> -jet to light-flavour jet hypotheses			\checkmark
$\log(P_{\rm b}/P_{\rm c})$	Likelihood ratio of the <i>b</i> -jet to <i>c</i> -jet hypotheses			\checkmark
$g(P_c/P_{light})$	Likelihood ratio of the c-jet to light-flavour jet hypotheses			\checkmark
Pb	<i>b</i> -jet probability			
$P_{\rm c}$	<i>c</i> -jet probability			
$P_{\rm light}$	light-flavour jet probability			
m(SV)	Invariant mass of tracks at the secondary vertex assuming pion	\checkmark		\checkmark
	mass			
$f_E(SV)$	Jet energy fraction of the tracks associated with the secondary	\checkmark		\checkmark
	vertex			
TrkAtVtx(SV)	Number of tracks used in the secondary vertex	\checkmark		\checkmark
$V_{2TrkVtx}(SV)$	Number of two-track vertex candidates	\checkmark		\checkmark
$L_{xy}(SV)$	Transverse distance between the primary and secondary vertices	\checkmark		\checkmark
$L_{XVZ}(SV)$	Distance between the primary and secondary vertices	\checkmark		\checkmark
$S_{xyz}(SV)$	Distance between the primary and secondary vertices divided by	\checkmark		\checkmark
	its uncertainty			
$(\vec{p}_{jet}, \vec{p}_{vtx})(SV)$	ΔR between the jet axis and the direction of the secondary vertex	\checkmark		\checkmark
-	relative to the primary vertex.			
m(JF)	Invariant mass of tracks from displaced vertices		\checkmark	\checkmark
$f_E(JF)$	Jet energy fraction of the tracks associated with the displaced		\checkmark	\checkmark
	vertices			
$(\vec{p}_{\text{jet}}, \vec{p}_{\text{vtx}})(\text{JF})$	ΔR between the jet axis and the vectorial sum of momenta of all		\checkmark	\checkmark
5	tracks attached to displaced vertices			
$S_{xyz}(JF)$	Significance of the average distance between PV and displaced		\checkmark	\checkmark
-	vertices			
V _{TrkAtVtx} (JF)	Number of tracks from multi-prong displaced vertices		\checkmark	\checkmark
V _{2TrkVtx} (JF)	Number of two-track vertex candidates (prior to decay chain fit)		\checkmark	\checkmark
-trk vertices(JF)	Number of single-prong displaced vertices		\checkmark	\checkmark
2-trk vertices(JF)	Number of multi-prong displaced vertices		\checkmark	\checkmark
$_{xyz}(2^{nd})(JF)$	Distance of 2 nd vertex from PV		\checkmark	\checkmark
$_{xy}(2^{nd})(JF)$	Transverse displacement of the 2 nd vertex		\checkmark	\checkmark
$u_{\rm Trk}(2^{\rm nd})(\rm JF)$	Invariant mass of tracks associated with the 2 nd vertex		\checkmark	\checkmark
$E(2^{\rm nd})(\rm JF)$	Energy of the tracks associated with the 2 nd vertex		\checkmark	\checkmark
$f_E(2^{nd})(JF)$	Jet energy fraction of the tracks associated with the 2 nd vertex		\checkmark	\checkmark
$(2^{nd})(JF)$	Number of tracks associated with the 2 nd vertex		\checkmark	\checkmark
$\max_{avg}(2^{nd})(IF)$	Min max and avg pseudorapidity of tracks at the 2 nd vertex		./	./
$(2)(\mathbf{J}\mathbf{I})$	which, max, and avg. poeudorapidity of tracks at the 2 vertex		v	V

RNN Tau-id

- Impose physically motivated ordering on reconstructed tracks
- similar to **RNN b-tagger** (track treated as sequence), each track is a time stamp
- Classify au_{had} candidate using tracks and associated variables

 $p_{T, track} > 500 \text{ MeV}$ $\Delta R(tau axis, track) < 0.4$

pp cross-section

- \bullet beam optics parameters needed for the reconstruction of the scattering angle θ^* at the IP
- in elastic scattering at high energies the four-momentum transfer t is calculated from θ^* by:

$$-t = \left(\theta^{\star} \times p\right)^2$$

• p is the nominal LHC beam momentum of 6.5 TeV and θ^* is reconstructed from the proton trajectories in ALFA

• theoretical form of t-dependence

Observation of WWW production

		- pos						
BDT variables			$ e^{\pm}e^{\pm}$	$e^{\pm}\mu^{\pm}$	$\mu^{\pm}\mu^{\pm}$	3ℓ		
2ℓ	3ℓ	WWW signal	28.4 ± 4.3	124 ± 19	82 ± 12	34.8 ±		
$ m_{jj} - m_W $	$E_{\rm T}^{\rm miss}$ significance $\times 10/E_{\rm T}^{\rm miss}$	WZ	81.1 ± 5.7	346 ± 22	170 ± 10	$16.4 \pm$		
$E_{\rm T}^{\rm miss}$ significance	$p_{T}(\ell_2)$ N(jets)	Charge-flip	31.1 ± 7.3	19 ± 5	-	$1.7 \pm$		
$p_{\mathrm{T}}(j_2)$	same flavor $m_{\ell\ell}$	$\gamma \text{ conversions}$	60.8 ± 8.5	139 ± 15	-	$1.5 \pm$		
minimum $m(\ell, j)$	$m_{\mathrm{T}}(\ell\ell\ell, E_{\mathrm{T}}^{\mathrm{miss}})$	Non-prompt	17.0 ± 4.0	145 ± 23	104 ± 21	$26.6 \pm$		
$m(\ell_2, j_1)$ N(iets)	$\frac{m(\ell_2,\ell_3)}{\Delta\phi(\ell\ell\ellE_{\rm m}^{\rm miss})}$	Other	22.3 ± 2.4	100 ± 10	58 ± 6	8.0 ±		
$p_{\mathrm{T}}(\ell_2)$	$ \begin{array}{c} \Delta \varphi(\alpha \alpha, D_{\Gamma}) \\ \text{minimum } \Delta R(\ell, \ell) \end{array} $	Total predicted	241 ± 11	873 ± 22	415 ± 17	89.0 ±		
$ \eta(\ell_1) $ N(leptons in jets)	$p_{\mathrm{T}}(\ell_3)$ $m_{\mathrm{T}}(\ell_2, E_{\mathrm{T}}^{\mathrm{miss}})$	Data	242	885	418	79		
$m(\ell_1, j_1)$	$E_{\rm T}^{\rm miss}$ significance							

$$S = \frac{E_{\rm T}^{\rm miss}}{\sqrt{H_{\rm T}}}$$
 or $S = \frac{E_{\rm T}^{\rm miss}}{\sqrt{\sum E_{\rm T}}};$

$$H_{\rm T} = \sum_{n=1}^{\infty}$$

M.Donadelli

Phys. Rev. Lett. 129 (2022) 061803

nact_fit number of events

 $\sum p_{\rm T}^{\mu} + \sum p_{\rm T}^{e} + \sum p_{\rm T}^{\gamma} + \sum p_{\rm T}^{\tau} + \sum p_{\rm T}^{\rm jets}$

Observation of polarisation in WZ production

Data		Powheg+Pythia	NLO QCD					
	$W^{\pm}Z$							
f_{00}	0.067 ± 0.010	0.0590 ± 0.0009	0.058 ± 0.002					
$f_{0\mathrm{T}}$	0.110 ± 0.029	0.1515 ± 0.0017	0.159 ± 0.003					
$f_{\rm T0}$	$0.179 ~\pm~ 0.023$	0.1465 ± 0.0017	0.149 ± 0.003					
$f_{\rm TT}$	0.644 ± 0.032	0.6431 ± 0.0021	0.628 ± 0.004					
W^+Z								
f_{00}	0.072 ± 0.016	0.0583 ± 0.0012	0.057 ± 0.002					
$f_{0\mathrm{T}}$	0.119 ± 0.034	0.1484 ± 0.0022	0.155 ± 0.003					
$f_{\rm T0}$	0.152 ± 0.033	0.1461 ± 0.0022	0.147 ± 0.003					
$f_{\rm TT}$	0.66 ± 0.04	0.6472 ± 0.0026	0.635 ± 0.004					
W^-Z								
f_{00}	0.063 ± 0.016	0.0600 ± 0.0014	0.059 ± 0.002					
$f_{0\mathrm{T}}$	0.11 ± 0.04	0.1560 ± 0.0027	0.166 ± 0.003					
$f_{\rm T0}$	0.21 ± 0.04	0.1470 ± 0.0027	0.152 ± 0.003					
$f_{\rm TT}$	0.62 ± 0.05	0.6370 ± 0.0033	0.618 ± 0.004					

	f_{00}	$f_{0\mathrm{T}}$	$f_{\rm T0}$	f_{TT}
e energy scale and id. efficiency	0.00018	0.0009	0.0012	0.001
μ energy scale and id. efficiency	0.0004	0.0004	0.0004	0.000
$E_{\rm T}^{\rm miss}$ and jets	0.0017	0.0021	0.0020	0.002
Pile-up	0.00031	0.00027	0.0007	0.001
Misidentified lepton background	0.0012	0.0026	0.0013	0.001
ZZ background	0.0005	0.00028	0.0005	0.000
Other backgrounds	0.0016	0.0025	0.0021	0.002
Parton Distribution Function	0.00025	0.0029	0.00014	0.002
QCD scale	0.00010	0.014	0.0014	0.012
Modelling	0.005	0.007	0.005	0.008
Total systematic uncertainty	0.006	0.017	0.006	0.016
Luminosity	0.00019	0.0004	0.0004	0.000
Statistical uncertainty	0.007	0.016	0.019	0.019
Total	0.010	0.029	0.023	0.032

Top pair production cross section at 5.02 TeV

							Category		$\delta\sigma_{tar{t}}$ [%]	
								Dilepton	Single lepton	Combination
	$\ell + 2j \ge 1b$	$\ell + 3j \ 1b$	$\ell + 3j \ 2b$	$\ell + \geq 4j \ 1b$	$\ell + 4j \ 2b$	$\ell + \geq 5j \ 2b$	$t\bar{t}$ generator [†]	1.2	1.0	0.8
<i>tT</i>	194 ± 27	310 ± 33	100 ± 24	690 ± 60	318 ± 32	380 ± 60	$t\bar{t}$ parton-shower/hadronisation*, [†]	0.3	0.9	0.7
ri Single ten	107 ± 27	09 ± 12	177 ± 27	67 ± 0	310 ± 32	150 ± 2.7	$t\bar{t}$ h_{damp} and scale variations [†]	1.0	1.1	0.8
Single top	193 ± 22	98 ± 12	38 ± 3	$6/\pm 9$	22 ± 4	15.9 ± 2.7	$t\bar{t}$ parton distribution functions [†]	0.2	0.2	0.2
W+jets	1700 ± 400	690 ± 210	58 ± 23	350 ± 120	30 ± 14	19 ± 10	Single-top background	1.1	0.8	0.6
Other bkg.	110 ± 40	55 ± 23	7.2 ± 3.0	29 ± 12	3.5 ± 1.5	3.7 ± 1.7	W/Z + jets background*	0.8	2.4	1.8
Misidentified leptons	250 ± 130	110 ± 60	10 ± 5	60 ± 30	6 ± 3	8 ± 5	Diboson background	0.3	0.1	< 0.1
	2500 . 400	10(0 - 010	212 . 24	1000 . 100	200 - 40	400 . 70	Misidentified leptons*	0.7	0.3	0.3
Total	2500 ± 400	1260 ± 210	312 ± 34	1200 ± 160	380 ± 40	430 ± 70	Electron identification/isolation	0.8	1.2	0.8
Data	2411	1214	293	1135	375	444	Electron energy scale/resolution	0.1	0.1	< 0.1
							Muon identification/isolation	0.6	0.2	0.3
							Muon momentum scale/resolution	0.1	0.1	0.1
							Lepton-trigger efficiency	0.2	0.9	0.7
							Jet-energy scale/resolution	0.1	1.1	0.8
							$\sqrt{s} = 5.02 \text{ TeV JES correction}$	0.1	0.6	0.5
							Jet-vertex tagging	< 0.1	0.2	0.2
							Flavour tagging	0.1	1.1	0.8
							$E_{ m T}^{ m miss}$	0.1	0.4	0.3
							Simulation statistical uncertainty*	0.2	0.6	0.5
							Data statistical uncertainty*	6.8	1.3	1.3
							Total systematic uncertainty	3.1	4.2	3.7
							Integrated luminosity	1.8	1.6	1.6
							Beam energy	0.3	0.3	0.3
							Total uncertainty	7.5	4.5	3.9
							<u>arXiv:2207.</u>	01353 (Submitted	to JHEP)

Single top+photon observation

Uncertainty	$\Delta \sigma / \sigma$
$t\bar{t}\gamma$ modeling	±5.5%
Background MC statistics	±3.6%
$t (\rightarrow \ell \nu b \gamma) q$ modeling	±3.3%
$tq\gamma$ MC statistics	±3.0%
<i>tī</i> modeling	±2.3%
$tq\gamma$ modeling	±2.3%
Additional background uncertainties	$\pm 2.0\%$
$t (\rightarrow \ell \nu b \gamma) q$ MC statistics	±0.3%
Lepton fakes	±2.2%
$h \rightarrow \gamma$ photon fakes	±2.1%
$e \rightarrow \gamma$ photon fakes	±0.6%
Luminosity	±2.2%
Pileup	±1.3%
Jets and $E_{\rm T}^{\rm miss}$	±3.5%
Photons	±2.5%
Leptons	$\pm 0.9\%$
<i>b</i> -tagging	±0.7%
Total systematic uncertainty	±10.7%

M.Donadelli

arXiv:2302.01283 (Submitted to Phys. Rev. Lett.)

Other prompt

Fake leptons

 $tq\gamma$

 $t\bar{t}\gamma$

500

 $\rightarrow Ivb\gamma)q \prod t\overline{t}\gamma$

400

600

...................

 $Z\gamma$ + jets

Fake leptons

Other prompt

tqγ

700

m_t [GeV]

0.9 **NN**out Highlights from ATLAS - LISHEP 2023

Observation of di-charmonium in 4µ states

• motivated by tetraquarks, in two channels:

 $T_{cc\bar{c}\bar{c}} \rightarrow J/\psi J/\psi \rightarrow 4\mu$

 $T_{cc\bar{c}\bar{c}} \rightarrow J/\psi \,\psi(2S) \rightarrow 4\mu$

Signal region Vertex $\chi^2_{4u}/N < 3$, $L_{xy}^{4\mu} < 0.2 \text{ mm}, |L_{xy}^{\text{di-}\mu}| < 0.3 \text{ mm},$ $m_{4\mu} < 7.5$ GeV, $\Delta R < 0.25$ between charmonia

H→4I: precise mass measurement

Final state	Higgs	ZZ, tXX, VVV	Reducible backgrounds	Expected total yield	Observed yield	S/B
$4\mu \\ 2e2\mu \\ 2\mu 2e \\ 4e$	78 ± 5 53.4 ± 3.2 41.2 ± 3.0 36.2 ± 2.7	38.7 ± 2.2 26.7 ± 1.4 17.9 ± 1.3 15.7 ± 1.6	2.84 ± 0.17 3.02 ± 0.19 3.4 ± 0.5 2.83 ± 0.35	120 ± 5 83.1 ± 3.5 62.5 ± 3.3 54.8 ± 3.2	$115 \\ 94 \\ 59 \\ 45$	$ \begin{array}{c} 1.89 \\ 1.80 \\ 1.93 \\ 1.95 \end{array} $
Total	209 ± 13	99 ± 6	12.2 ± 0.9	321 ± 14	313	1.88

Systematic Uncertainty	Contribution [MeV]
Muon momentum scale Electron energy scale Signal-process theory	$ \begin{array}{c} \pm 28 \\ \pm 19 \\ \pm 14 \end{array} $

arXiv:2207.00320 (Submitted to: Physics Letters B)

Evidence of off-shell Higgs

 $77 \rightarrow 10$

						ggF	Mixed	EW
Process	aaF	Mixed	FW	$gg \to (H^* -$	$\rightarrow)ZZ$	210 ± 53	19.7 ± 4.9	4.29 ± 1.10
1100055	ggr	MIXeu		gg ightarrow I	$H^* \to ZZ$	111 ± 26	10.9 ± 2.5	3.26 ± 0.82
$gg \to (H^* \to)ZZ$	341 ± 117	42.5 ± 14.9	11.8 ± 4.3	gg ightarrow Z	ZZ	251 ± 66	23.4 ± 6.2	5.31 ± 1.46
$gg \to H^* \to ZZ$	32.6 ± 9.07	3.68 ± 1.03	1.58 ± 0.47	$qq \rightarrow (H^* -$	$\rightarrow)ZZ + 2j$	14.0 ± 3.0	1.63 ± 0.17	4.46 ± 0.50
$gg \to ZZ$	345 ± 119	43.0 ± 15.2	11.9 ± 4.4	qqZZ		1422 ± 112	80.4 ± 11.9	7.74 ± 2.99
$qq \to (H^* \to)ZZ + 2j$	23.2 ± 1.0	2.03 ± 0.16	9.89 ± 0.96	WZ		678 ± 54	51.9 ± 6.9	7.89 ± 2.50
qqZZ	1878 ± 151	135 ± 23	22.0 ± 8.3	Z+jets		62.3 ± 24.3	7.51 ± 6.94	0.62 ± 0.54
Other backgrounds	50.6 ± 2.5	1.79 ± 0.16	1.65 ± 0.16	Non-resona	nt - $\ell\ell$	106 ± 39	9.17 ± 2.73	1.55 ± 0.42
Total expected (SM)	2293 ± 209	181 ± 29	45.3 ± 10.0	Other back	grounds	22.6 ± 5.2	1.62 ± 0.25	1.40 ± 0.10
Obconved		170	50	Total expec	eted (SM)	2515 ± 165	172 ± 17	28.0 ± 4.1
Observed	2321	110		Observed		2496	181	27

M.Donadelli

ATLAS-CONF-2022-068

 $ZZ \rightarrow 2\ell 2v$

EW signal region

EW includes VBF and VH

 $n_{
m jets}\,\geq 2$ and $\Delta\eta_{jj}\geq 4.0$

Search for $H \rightarrow \mu\mu$

- 20 categories exploiting topological and kinematic differences between background and different H production modes (ggF, VBF, VH and ttH)
- background dominated inclusively by DY processes

Phys. Lett. B 812 (2021) 135980

observed (expected) 2.0 σ (1.7 σ)

 $\mu = 1.2 \pm 0.6$

CP properties with $H \rightarrow \tau \tau$

 $d\Gamma_{H\to\tau^+\tau^-} \approx 1 - b(E_+)b(E_-)\frac{\pi^2}{16}\cos(\varphi_{CP}^* - 2\phi_{\tau})$

Decay channel	Decay mode combination	Method	Fraction in all τ -lepton-pair decays
	ℓ–1p0n	IP	8.1%
$ au_{ m lep} au_{ m had}$	ℓ–1p1n	IP- ρ	18.3%
	ℓ–1pXn	IP– ρ	7.6%
	ℓ–3p0n	IP– a_1	6.9%
	1p0n-1p0n	IP	1.3%
	1p0n-1p1n	$IP-\rho$	6.0%
	1p1n–1p1n	ho	6.7%
7had7had	1p0n–1pXn	IP- ρ	2.5%
	1p1n–1pXn	ho	5.6%
	1p1n-3p0n	ρ – a_1	5.1%

Figure 1: Illustration of the τ -lepton decay planes for constructing the φ_{CP}^* observable in (a) $H \to \tau^+ \tau^- \to \pi^+ \pi^- + 2\nu$ decay using the impact parameter method, (b) $H \to \tau^+ \tau^- \to \pi^+ \pi^0 \nu \pi^- \pi^0 \nu$ using the ρ -decay plane method, and (c) $H \to \tau^+ \tau^- \to \pi^+ \pi^0 \nu \pi^- \nu$ using the combined impact parameter and ρ -decay plane method. The decay planes are spanned by the spatial momentum vector of the charged decay particle of the τ -lepton (π^\pm) and either its impact parameter $\mathbf{n}^{*\pm}$ or the spatial momentum vector of the neutral decay particle of the τ -lepton (π^0).

STXS $H \rightarrow \gamma \gamma$

- multi-class BDT used to classify events into STXS regions

	$ggF + b\bar{b}H$	VBF	WH	ZH	ttH	tH
Uncertainty source	$\Delta\sigma$ [%]					
Theory uncertainties						
Higher-order QCD terms	±1.4	±4.1	±4.1	±12	± 2.8	±16
Underlying event and parton shower	±2.5	±16	± 2.5	± 4.0	±3.6	± 48
PDF and $\alpha_{\rm s}$	< ±1	± 2.0	± 1.4	± 2.3	< ±1	± 5.8
Matrix element	< ±1	± 3.2	< ±1	± 1.2	± 2.5	± 8.2
Heavy-flavour jet modelling in non- $t\bar{t}H$ processes	< ±1	< ±1	< ±1	< ±1	< ±1	±13
Experimental uncertainties						
Photon energy resolution	±3.0	±3.0	±3.8	± 4.8	±3.0	±12
Photon efficiency	±2.7	±2.7	± 3.3	±3.6	± 2.9	±9.3
Luminosity	± 1.8	± 2.0	± 2.4	±2.7	± 2.2	±6.6
Pile-up	±1.4	± 2.2	± 2.0	± 2.3	± 1.4	±7.3
Background modelling	± 2.0	± 4.6	±3.6	±7.2	± 2.5	±63
Photon energy scale	< ±1	< ±1	< ±1	±1.3	< ±1	± 5.6
$\text{Jet}/E_{ ext{T}}^{ ext{miss}}$	< ±1	± 6.8	< ±1	± 2.2	± 3.5	±22
Flavour tagging	< ±1	< ±1	< ±1	< ±1	±1.5	± 3.4
Leptons	< ±1	< ±1	< ±1	< ±1	< ±1	± 1.8
Higgs boson mass	< ±1	< ±1	< ±1	< ±1	< ±1	< ±1

M.Donadelli

arXiv:2207.00348

Highlights from ATLAS - LISHEP 2023

 $\rightarrow H, \geq 2$ -jets, $350 \leq m_{jj} < 700 \text{ GeV}, p_T^H < 200 \text{ GeV}$

 $qq' \rightarrow Hqq'$, ≥ 2 -jets, $350 \leq m_{jj} < 700 \text{ GeV}, p_T^H < 200 \text{ GeV}$ $qq' \rightarrow Hqq'$, ≥ 2 -jets, $350 \leq m_{jj} < 700 \text{ GeV}, p_{\Gamma}^H \geq 200 \text{ GeV}$ $qq' \to Hqq', \ge 2$ -jets, $700 \le m_{jj} < 1000 \,\text{GeV}, \, p_{\text{T}}^H < 200 \,\text{GeV}$ $qq' \rightarrow Hqq'$, ≥ 2 -jets, 700 $\leq m_{jj} < 1000 \text{ GeV}, p_T^H \geq 200 \text{ GeV}$

$H \rightarrow \gamma \gamma$ (EFT)

Coeff.	Operator	Incl.	Coeff.	Operator	Incl.
c _G	$f^{ABC}G^{A\nu}_{\mu}G^{B ho}_{\nu}G^{C\mu}_{ ho}$	\checkmark	$c_{qq}^{(3)}$	$(\bar{q}_r \gamma_\mu \tau^I q_r) (\bar{q}_s \gamma^\mu \tau^I q_s)$	\checkmark
c_W	$\epsilon^{IJK} W^{I\nu}_{\mu} W^{J\rho}_{\nu} W^{K\mu}_{\rho}$	\checkmark	$c_{qq}^{(3)}$	$(ar{q}_r \gamma_\mu au^I q_s) (ar{q}_s \gamma^\mu au^I q_r)$	\checkmark
c_H	$(H^{\dagger}H)^3$		$c_{qq}^{(1)}$	$(\bar{q}_r \gamma_\mu q_r) (\bar{q}_s \gamma^\mu q_s)$	\checkmark
$c_{H\square}$	$(H^\dagger H) \square (H^\dagger H)$	\checkmark	$c_{qq}^{(1)\prime}$	$(\bar{q}_r \gamma_\mu q_s)(\bar{q}_s \gamma^\mu q_r)$	\checkmark
c _{HD}	$\left(H^{\dagger}D^{\mu}H ight)^{*}\left(H^{\dagger}D_{\mu}H ight)$	\checkmark	$c_{lq}^{(3)}$	$(ar{l}_r \gamma_\mu au^I l_r) (ar{q}_s \gamma^\mu au^I q_s)$	
c _{HG}	$H^\dagger HG^A_{\mu u}G^{A\mu u}$	\checkmark	$c_{la}^{(1)}$	$(\bar{l}_r \gamma_\mu l_r) (\bar{q}_s \gamma^\mu q_s)$	
c_{HW}	$H^{\dagger}HW^{I}_{\mu u}W^{I\mu u}$	\checkmark	c _{ee}	$(\bar{e}_r \gamma_\mu e_r) (\bar{e}_s \gamma^\mu e_s)$	
c_{HB}	$H^{\dagger}HB_{\mu u}B^{\mu u}$	\checkmark	c _{eu}	$(\bar{e}_r \gamma_\mu e_r)(\bar{u}_s \gamma^\mu u_s)$	
c_{HWB}	$H^{\dagger} au^{I} H W^{I}_{\mu u} B^{\mu u}$	\checkmark	c _{ed}	$(\bar{e}_r \gamma_\mu e_r) (\bar{d}_s \gamma^\mu d_s)$	
c_{eH}	$(H^{\dagger}H)(\bar{l}_{p}[Y_{e}^{\dagger}]_{pq}e_{q}H)$	\checkmark	c _{uu}	$(\bar{u}_r \gamma_\mu u_r)(\bar{u}_s \gamma^\mu u_s)$	\checkmark
c_{uH}	$(H^{\dagger}H)(\bar{q}_{p}[Y_{u}^{\dagger}]_{pq}u_{q}\widetilde{H})$	\checkmark	c'_{uu}	$(\bar{u}_r \gamma_\mu u_s)(\bar{u}_s \gamma^\mu u_r)$	\checkmark
c_{dH}	$(H^{\dagger}H)(\bar{q}_{p}[Y_{d}^{\dagger}]_{pq}d_{q}H)$	\checkmark	c _{dd}	$(\bar{d}_r \gamma_\mu d_r) (\bar{d}_s \gamma^\mu d_s)$	
C_{eW}	$(\bar{l}_p \sigma^{\mu\nu} [Y_e^{\dagger}]_{pq} e_q) \tau^I H W^I_{\mu\nu}$		c'_{dd}	$(\bar{d}_r \gamma_\mu d_s) (\bar{d}_s \gamma^\mu d_r)$	
C_{eB}	$(\bar{l}_p \sigma^{\mu\nu} [Y_e^{\dagger}]_{pq} e_q) H B_{\mu\nu}$		$c_{ud}^{(1)}$	$(\bar{u}_r \gamma_\mu u_r) (\bar{d}_s \gamma^\mu d_s)$	\checkmark
c_{uG}	$(\bar{q}_p \sigma^{\mu\nu} T^A [Y_u^{\dagger}]_{pq} u_q) \widetilde{H} G^A_{\mu\nu}$	\checkmark	$c_{ud}^{(8)}$	$(\bar{u}_r \gamma_\mu T^A u_r) (\bar{d}_s \gamma^\mu T^A d_s)$	\checkmark
c_{uW}	$(\bar{q}_p \sigma^{\mu\nu} [Y_u^{\dagger}]_{pq} u_q) \tau^I \widetilde{H} W_{\mu\nu}^{I}$	\checkmark	c _{le}	$(\bar{l}_r \gamma_\mu l_r) (\bar{e}_s \gamma^\mu e_s)$	
c_{uB}	$(\bar{q}_p \sigma^{\mu\nu} [Y_u^{\dagger}]_{pq} u_q) \widetilde{H} B_{\mu\nu}$	\checkmark	c_{lu}	$(\bar{l}_r \gamma_\mu l_r) (\bar{u}_s \gamma^\mu u_s)$	
C_{dG}	$(\bar{q}_p \sigma^{\mu\nu} T^A [Y_d^{\dagger}]_{pq} d_q) H G^A_{\mu\nu}$		c _{ld}	$(\bar{l}_r \gamma_\mu l_r) (\bar{d}_s \gamma^\mu d_s)$	
c_{dW}	$(\bar{q}_p \sigma^{\mu\nu} [Y_d^{\dagger}]_{pq} d_q) \tau^I H W_{\mu\nu}^I$		c_{qe}	$(\bar{q}_r \gamma_\mu q_r) (\bar{e}_s \gamma^\mu e_s)$	
C_{dB}	$(\bar{q}_p \sigma^{\mu\nu} [Y_d^{\dagger}]_{pq} d_q) H B_{\mu\nu}$		$c_{qu}^{(1)}$	$(\bar{q}_r \gamma_\mu q_r) (\bar{u}_s \gamma^\mu u_s)$	\checkmark
$c_{Hl}^{(3)}$	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}H)(\bar{l}_{r}\tau^{I}\gamma^{\mu}l_{r})$	\checkmark	$c_{qu}^{(8)}$	$(\bar{q}_r \gamma_\mu T^A q_r) (\bar{u}_s \gamma^\mu T^A u_s)$	\checkmark
$c_{Hl}^{(1)}$	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{l}_{r}\gamma^{\mu}l_{r})$	\checkmark	$c_{qd}^{(1)}$	$(ar{q}_r \gamma_\mu q_r) (ar{d}_s \gamma^\mu d_s)$	\checkmark
c_{He}	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{e}_{r}\gamma^{\mu}e_{r})$	\checkmark	$c_{qd}^{(8)}$	$(ar{q}_r \gamma_\mu T^A q_r) (ar{d}_s \gamma^\mu T^A d_s)$	\checkmark
$c_{Hq}^{(3)}$	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}H)(\bar{q}_{r}\tau^{I}\gamma^{\mu}q_{r})$	\checkmark	c_{ledq}	$(\bar{l}_p^j [Y_l^{\dagger}]_{pq} e_q) (\bar{d}_r [Y_d]_{rs} q_s^j)$	
$c_{Hq}^{(1)}$	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{q}_{r}\gamma^{\mu}q_{r})$	\checkmark	$c_{quqd}^{(1)}$	$(\bar{q}_p^j [Y_u^{\dagger}]_{pq} u_q) \epsilon_{jk} (\bar{q}_r^k [Y_d^{\dagger}]_{rs} d_s)$	
c_{Hu}	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{u}_{r}\gamma^{\mu}u_{r})$	\checkmark	$c_{quqd}^{(1)}$	$(\bar{q}_p^j [Y_d^{\dagger}]_{ps} u_q) \epsilon_{jk} (\bar{q}_r^k [Y_u^{\dagger}]_{rq} d_s)$	
c_{Hd}	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{d}_{r}\gamma^{\mu}d_{r})$	\checkmark	$c_{quqd}^{(8)}$	$(\bar{q}_p^j T^A[Y_u^{\dagger}]_{pq} u_q) \epsilon_{jk} (\bar{q}_r^k T^A[Y_d^{\dagger}]_{rs} d_s)$	
c_{Hud}	$(H^{\dagger}iD_{\mu}H)(\bar{u}_{p}\gamma^{\mu}[Y_{u}Y_{d}^{\dagger}]_{pq}d_{q})$		$c_{quqd}^{(8)}$	$(\bar{q}_p^j T^A[Y_d^{\dagger}]_{ps} u_q) \epsilon_{jk} (\bar{q}_r^k T^A[Y_u^{\dagger}]_{rq} d_s)$	
c_{ll}	$(\bar{l}_r \gamma_\mu l_r) (\bar{l}_s \gamma^\mu l_s)$		$c_{lequ}^{(1)}$	$(\bar{l}_p^j [Y_e^{\dagger}]_{pq} e_q) \epsilon_{jk} (\bar{q}_r^k [Y_u^{\dagger}]_{rs} u_s)$	
c'_{ll}	$(\bar{l}_r \gamma_\mu l_s)(\bar{l}_s \gamma^\mu l_r)$	\checkmark	$c_{lequ}^{(3)}$	$(\bar{l}_{p}^{j}\sigma^{\mu\nu}[Y_{e}^{\dagger}]_{ps}e_{q})\epsilon_{jk}(\bar{q}_{r}^{k}\sigma_{\mu\nu}[Y_{u}^{\dagger}]_{rq}u_{s})$	

M.Donadelli

arXiv:2207.00348

Search for $H \rightarrow \mu\mu$

Selection

Primary vertex Two opposite-charge Muons: $ \eta < 2.7$, $p_{T}^{lead} > 27$ GeV, $p_{T}^{sublead} >$
$110 < m_{\mu\mu} < 160$
$p_{\rm T} > 25 \text{GeV}$ and $ \eta $ or with $p_{\rm T} > 30 \text{GeV}$ and 2.
at least one additional <i>e</i> or μ with $p_T > 15$ Ge $p_T^{\text{sublead}} > 10$ GeV, one additional <i>e</i> (μ) with $p_T > 10$ at least two additional <i>e</i> or μ with $p_T > 10$ at least two additional <i>e</i> or μ with $p_T > 10$ at least two additional <i>e</i> or μ with $\mu_T > 10$ and $\mu_T > 10$ additional μ_T

muons

15 GeV (except VH 3-lepton)

GeV

< 2.4 $.4 < |\eta| < 4.5$

eV, at least one *b*-jet (85% WP) > 15(10) GeV, no *b*-jets (85% WP) 6 GeV, no *b*-jets (85% WP) (60% WP)

Category	Data	$S_{ m SM}$	S	В	S/\sqrt{B}	S/B~[%]	$\sigma ~[{\rm GeV}]$
VBF Very High	15	2.81 ± 0.27	3.3 ± 1.7	14.5 ± 2.1	0.86	22.6	3.0
VBF High	39	3.46 ± 0.36	4.0 ± 2.1	32.5 ± 2.9	0.71	12.4	3.0
VBF Medium	112	4.8 ± 0.5	5.6 ± 2.8	85 ± 4	0.61	6.6	2.9
VBF Low	284	7.5 ± 0.9	9 ± 4	273 ± 8	0.53	3.2	3.0
2-jet Very High	1030	17.6 ± 3.3	21 ± 10	1024 ± 22	0.63	2.0	3.1
2-jet High	5433	50 ± 8	58 ± 30	5440 ± 50	0.77	1.0	2.9
2-jet Medium	18311	79 ± 15	90 ± 50	18320 ± 90	0.66	0.5	2.9
2-jet Low	36409	63 ± 17	70 ± 40	36340 ± 140	0.37	0.2	2.9
1-jet Very High	1097	16.5 ± 2.4	19 ± 10	1071 ± 22	0.59	1.8	2.9
1-jet High	6413	46 ± 7	54 ± 28	6320 ± 50	0.69	0.9	2.8
1-jet Medium	24576	90 ± 11	100 ± 50	24290 ± 100	0.67	0.4	2.7
1-jet Low	73459	125 ± 17	150 ± 70	73480 ± 190	0.53	0.2	2.8
0-jet Very High	15986	59 ± 11	70 ± 40	16090 ± 90	0.55	0.4	2.6
0-jet High	46523	99 ± 13	120 ± 60	46190 ± 150	0.54	0.3	2.6
0-jet Medium	91392	119 ± 14	140 ± 70	91310 ± 210	0.46	0.2	2.7
0-jet Low	121354	79 ± 10	90 ± 50	121310 ± 280	0.26	0.1	2.7
VH4L	34	0.53 ± 0.05	0.6 ± 0.3	24 ± 4	0.13	2.6	2.9
VH3LH	41	1.45 ± 0.14	1.7 ± 0.9	41 ± 5	0.27	4.2	3.1
VH3LM	358	2.76 ± 0.24	3.2 ± 1.6	347 ± 15	0.17	0.9	3.0
$t\bar{t}H$	17	1.19 ± 0.13	1.4 ± 0.7	15.1 ± 2.2	0.36	9.2	3.2

Search for $H \rightarrow cc$

Eur. Phys. J. C 82 (2022) 717

Com
≥ 2 $\geq 1 \text{ sig}$ One or No <i>b</i> -ta
2, 3 (0- 75–150 > 150 (
$75 < p_{T}^{V}$ $150 < p_{T}^{V}$ $p_{T}^{V} > 2$
$E_{\rm T}^{\rm miss}$ No loos > 150 C > 30 G > 120 C > 20° (> 120°

$ \Delta \phi(\mathbf{jet1}, \mathbf{jet2}) $ $ \Delta \phi(E_{\mathrm{T}}^{\mathrm{miss}}, p_{\mathrm{T}}^{\mathrm{miss}}) $	< 140 < 90°
Trigger Leptons $E_{\rm T}^{\rm miss}$ $m_{\rm T}^W$	<i>e</i> sub- μ sub One <i>t</i> > 30 < 120
Trigger Leptons	Single Exact Same

 $m_{\ell\ell}$

M.Donadelli

ommon Selections

signal jet with $p_{\rm T} > 45 \text{ GeV}$ or two *c*-tagged signal jets *b*-tagged non-signal jets (0- and 1-lepton); $2, \ge 3$ (2-lepton) 150 GeV (2-lepton) 50 GeV $p_{\rm T}^V < 150 \text{ GeV}: \Delta R \le 2.3$ $p_{\rm T}^V < 250 \text{ GeV}: \Delta R \le 1.6$

> 250 GeV: $\Delta R \le 1.2$

0 Lepton

```
loose leptons
     50 GeV
     GeV
     20 GeV (2 jets), > 150 GeV (3 jets)
     0^{\circ} (2 \text{ jets}), > 30^{\circ} (3 \text{ jets})
< 140°
```

1 Lepton

-channel: single electron o-channel: $E_{\rm T}^{\rm miss}$ *tight* lepton and no additional *loose* leptons GeV (*e* sub-channel) 0 GeV

2 Lepton

le lepton tly two *loose* leptons flavour, opposite charge for $\mu\mu$ $81 < m_{\ell\ell} < 101 \text{ GeV}$

The shape of the potential matters

Measurements of HH can provide discrimination between different scenarios and models...

Phys. Rev. D 101, 075023

Landau-Ginzburg Higgs

... but measuring triple-Higgs production at a future collider (e.g. 100 TeV machine) will be needed to define the exact shape of the potential.

Nambu-Goldstone Higgs

Coleman-Weinberg Higgs

Tadpole-Induced Higgs

Search for pair production of third-generation leptoquarks

- selection in $au_{\text{lep}} au_{\text{had}}, au_{\text{had}} au_{\text{had}}$
- PNN inputs consist of a combination of multiplicity, kinematic and angular quantities

	$ au_{ m lep} au_{ m had}$ channel	$ au_{ m had} au_{ m had}$ channel	
e/μ selection	= 1 'signal' <i>e</i> or μ $p_{\rm T}^{e} > 25,27 {\rm GeV}$ $p_{\rm T}^{\mu} > 21,27 {\rm GeV}$	No 'veto' <i>e</i> or μ	
$ au_{had-vis}$ selection	$= 1 \tau_{\text{had-vis}}$ $p_{\text{T}}^{\tau} > 100 \text{GeV}$	= 2 $\tau_{\text{had-vis}}$ $p_{\text{T}}^{\tau} > 100, 140, 180 \ (20) \text{ GeV}$	
Jet selection	$\geq 2 \text{ jets}$ $p_{T}^{\text{jet}} > 45 (20) \text{ GeV}$ $1 \text{ or } 2 b \text{-jets}$		
Additional selection	Opposite charge e, μ, τ_{had} and τ_{had} $m_{\tau\tau}^{MMC} \notin 40 - 150 \text{ GeV}$ $E_{T}^{miss} > 100 \text{ GeV}$ $s_{T} > 600 \text{ GeV}$		

M.Donadelli

arXiv:2303.01924 (Submitted to: EPJC)

 $b\tau$ invariant mass, the most likely combination of the τ -lepton and a b-jet is chosen based on a masspairing strategy that minimises the mass difference between the two resulting LQ candidates

Variable	$ au_{ ext{lep}} au_{ ext{had}}$ channel	$ au_{ ext{had}} au_{ ext{had}}$ channel
$ au_{ m had-vis} p_{ m T}^0$	✓	\checkmark
s _T	\checkmark	\checkmark
N_{b-jets}	\checkmark	\checkmark
$m(\tau, \text{jet})_{0,1}$		\checkmark
$m(\ell, \text{jet}), m(\tau_{\text{had}}, \text{jet})$	\checkmark	
$\Delta R(\tau, \text{jet})$	\checkmark	\checkmark
$\Delta \phi(\ell, E_{\rm T}^{\rm miss})$	\checkmark	
$E_{\rm T}^{\rm miss} \phi$ centrality	\checkmark	\checkmark

Measurement of tt/Z cross-section ratio at 13.6 TeV

	Category		Uncert. $[\%]$		
		$\sigma_{t ar{t}}$	$\sigma_{Z \to \ell \ell}^{m_{\ell \ell} > 40}$	$R_{t\bar{t}/Z}$	
$t\bar{t}$	$t\bar{t}$ parton shower/hadronisation	0.6	0.2	0.7	
	$t\bar{t}$ scale variations	0.5	0.1	0.5	
Z	Z scale variations	0.2	2.9	2.9	
Bkg.	Single top modelling	0.6	< 0.01	0.6	
	Diboson modelling	0.1	< 0.01	0.5	
	Mis-Id leptons	0.6	< 0.01	0.6	
Lept.	Electron reconstruction	1.6	2.3	1.1	
	Muon reconstruction	1.3	2.4	0.3	
	Lepton trigger	0.2	1.3	1.1	
Jets/tagging	Jet reconstruction	0.2	< 0.01	0.2	
·	Flavour tagging	1.9	< 0.01	1.9	
	PDFs	0.5	1.4	1.3	
	Luminosity	10.3	9.6	1.3	
	Systematic Uncertainty	10.8	10.7	4.4	
	Statistical Uncertainty	1.5	0.1	1.5	
	Total Uncertainty	11	10.7	4.7	

Example HL-LHC expectations exceeded

ATL-PHYS-PUB-2014-016

 $\mu = 1.05 \pm 0.06$

• ATLAS Run 2 results comparable to 2014 HL-LHC projections!

M.Donadelli

Nature 607, 52-59 (2022)

 $= 1.05 \pm 0.03$ (stat.) ± 0.03 (exp.) ± 0.04 (sig.th.) ± 0.04 (bkg.th.)

Example HL-LHC sensitivity to κ_{λ}

Projection studies for $H \rightarrow bb\gamma\gamma + bb\tau\tau + bbbb$

Combining bbγγ,bbττ,bbbb

• Baseline - experimental uncertainties scaled, and theory uncertainties halved

	Significance [σ]			Combined s	
Uncertainty scenario	$bar{b}\gamma\gamma$	$bar{b} au^+ au^-$	$b\bar{b}b\bar{b}$	Combination	strength precis
No syst. unc.	2.3	4.0	1.8	4.9	-21/+22
Baseline	2.2	2.8	0.99	3.4	-30/+3
Theoretical unc. halved	1.1	1.7	0.65	2.1	-47/+48
Run 2 syst. unc.	1.1	1.5	0.65	1.9	-53/+6

Uncertainty scenario	<i>к</i> _λ 68% CI	κ _λ 95% CI
No syst. unc.	[0.7, 1.4]	[0.3, 1.9]
Baseline	[0.5, 1.6]	[0.0, 2.5]
Theoretical unc. halved	[0.3, 2.2]	[-0.3, 5.5]
Run 2 syst. unc.	[0.1, 2.4]	[-0.6, 5.6]

Example HL-LHC sensitivity to κ_{λ}

Summary of the systematic uncertainty scale factors considered HL-LHC baseline scenario.

Source	HL-LHC Scale Fact
Experimental Uncertainties	
Luminosity	0.6
Electrons and muons efficiency	1.0
<i>b</i> -jet tagging efficiency	0.5
<i>c</i> -jet tagging efficiency	0.5
Light-jet tagging efficiency	1.0
$\tau_{\text{had-vis}}$ efficiency (statistical)	0.0
$\tau_{\text{had-vis}}$ efficiency (systematic)	1.0
$ au_{ m had-vis}$ energy scale	1.0
Fake- $\tau_{had-vis}$ estimation	1.0
Jet energy scale and resolution, $E_{\rm T}^{\rm miss}$	1.0
κ_{λ} reweighting	0.0
Theoretical Uncertainties	0.5

tor

- Combining bbγγ,bbττ,bbbb
- Scenarios:
 - 1. No systematic uncertainties (optimistic)

Baseline - experimental uncertainties scaled, and theory uncertainties halved

- 3. Theory uncertainties halved but with Run2 experimental systematic uncertainties
- 4. Run2 systematic uncertainties (conservative)

