

Rio de Janeiro March 7th, 2023

The Future Circular Colliders (FCC) Feasibility Study and its Physics Potential

Gregorio Bernardi APC Paris, CNRS/IN2P3 gregorio@in2p3.fr

With many thanks to all in the FCC collaboration, in particular M. Benedikt, A. Blondel, M. Dam, D. d'Enteria, C. Grojean, P. Janot, E. Perez, F. Simon

Presentation Layout

- Why do we need a new accelerator after the LHC?
- Linear or Circular ?
- The FCC Feasibility Study
- The FCC-ee Physics potential
- Next steps

Why do we need a new accelerator after the LHC?

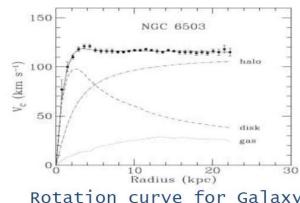
Particle physics appears as a mature branch of fundamental science

The 'Standard Model' appeared in 1976 after the discoveries of

- Neutrino Neutral currents (Z boson exchange) in 1973 and
- Charmed particles (BNL, SLAC) in 1974-76

since then we have been discovering all the particles that have **electric charge** or **QCD charge**, or **weak isospin** (SM couplings), and the Higgs boson, **by increasing accelerator energies.**

The Standard Model is "complete" and explains all HEP Physics, but...

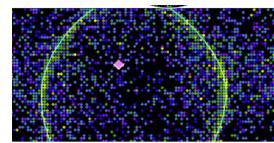


but.. we cannot explain crucial observations with the SM, for instance:

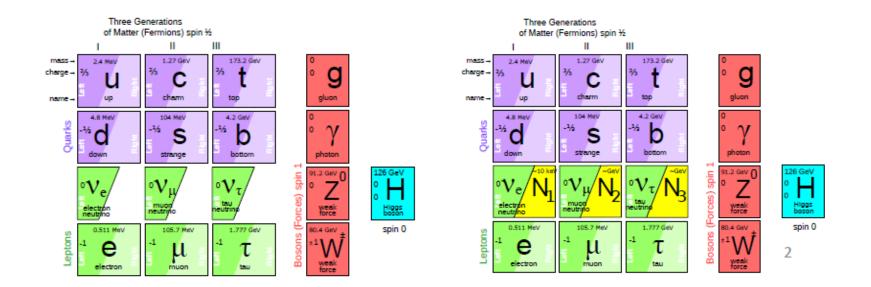
What is Dark matter?

Standard Model particles constitute only 5% of the energy in the Universe

Rotation curve for Galaxy


Were is primordial antimatter gone?

What is the origin of neutrino masses?

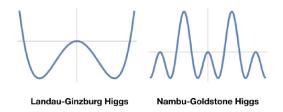

Not a unique solution in the SM Dirac masses (why so small?) or Majorana (why not Dirac?)

→ heavy right-handed neutrinos?

... some pieces of the SM could still be missing

Since 1998 it is established that neutrinos have mass (oscillations) and this probably implies new degrees of freedom

 «sterile», very small coupling to known particles completely unknown masses (eV to ZeV), hence very difficult to find.
 but could perhaps explain all: Dark Matter, Baryon Asymmetry, v-masses


FCC ...and the Higgs boson/field still need to be better understood

- → It is a unique object, a scalar particle/field (spin 0), not a matter field, not a boson mediating a gauge interaction, but a field carrying a new type of interaction of the Yukawa type.
- → Many proposals for new accelerators to study it, and to study Beyond Standard Model (BSM) physics
- → Easier choice on the machine now that the Higgs boson has been discovered.

Precise nature of the Higgs boson?

Origin of electroweak symmetry breaking (EWSB)?

Shape of the Higgs potential?

Strength of the electroweak phase transition? What is its role just after the big bang? Inflation?

We need to determine precisely the Higgs couplings and the Higgs self-couplings to answer these questions.

Motivation for a circular collider FCC-ee vs. a linear collider

One of the great advantages of the circular (e+ e-) colliders is:

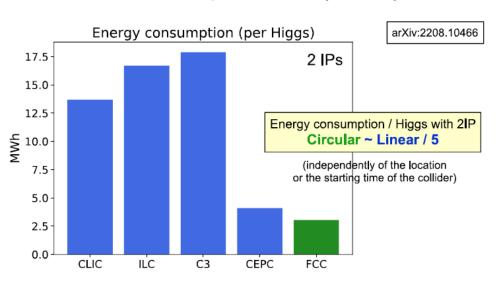
- The possibility of using the same beams for many hours and serving several interaction points with net overall gain both in integrated luminosity and luminosity/MW.

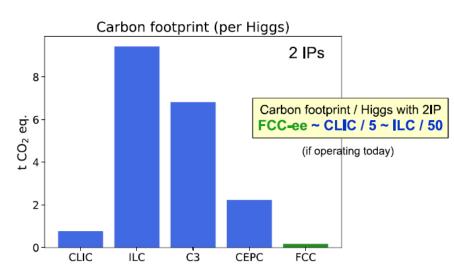
FCC-ee is a machine with a very rich menu of physics possibilities, given its luminosity, and the options to run at many differenter center-of-mass energies

this leads to many detector requirements, which are best satisfied with more than one detector \rightarrow we are aiming at 4 detectors in 4 interactions points with complementary strengths

Example of competing constraints for EM calorimeter: high E precision vs. high granularity vs. high stability vs. geometric accuracy vs. PID

- many measurements will serve as input to future programs in particular FCC-hh
- many are statistically limited
- redundancy provided by 4IPs/detectors is essential for high precision measurements (hidden systematic biases)


The limitation in maximum energy (not as strong for a linear collider) is not a crucial drawback, given the current HEP panorama given by the SM, and the subsequent FCC-hh program which will reach the highest energies


The non availability of beam polarization (an advantage of linear colliders) is also not a crucial drawback since FCC-ee will run at different energies and will accumulate much more statistics.

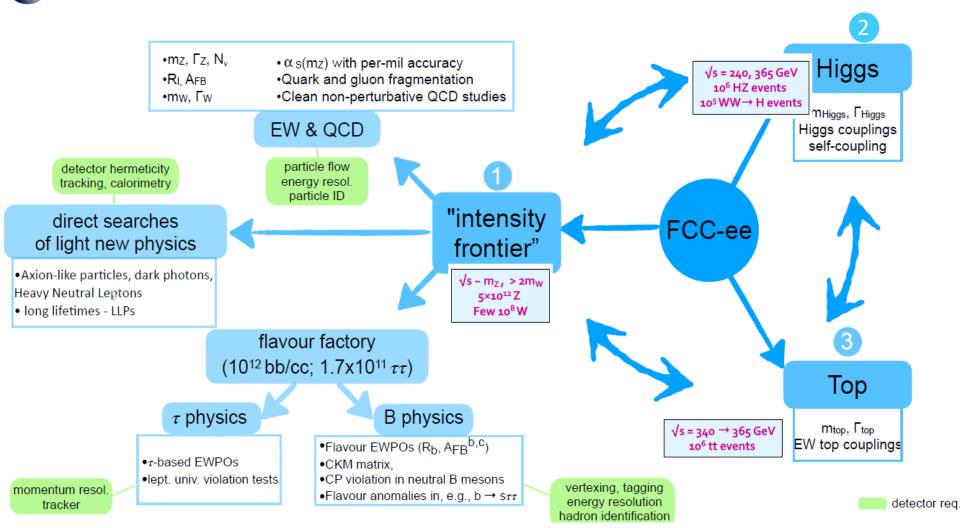
FCC Energy consumption and Carbon footprint: FCC vs. other projects

- Our first responsibility (as particle physicists) is to do the maximum of science
 - With the minimum energy consumption and the minimum environmental impact for our planet
 - Should become one of our top-level decision criteria for design, choice and optimization of a collider
 - All Higgs factories have a "similar" physics outcome (ESU'20 and Snowmass'21)
 - Natural question: what is their energy consumption or carbon footprint for the same physics outcome?
 - Circular colliders have a much larger instantaneous luminosity and operate several detectors
 - FCC-ee is at CERN, where electricity is already almost carbon-free

How to best study the Higgs / go beyond the Standard Model?

- By measuring deviations from precise predictions (ex: Higgs or Electroweak couplings...)
- By observing New Phenomena (ex: Neutrino Oscillations, CP violation..)
- By direct observation of new particles

But we do not have a natural energy scale to search for !


→ We don't know where to look and what we will find

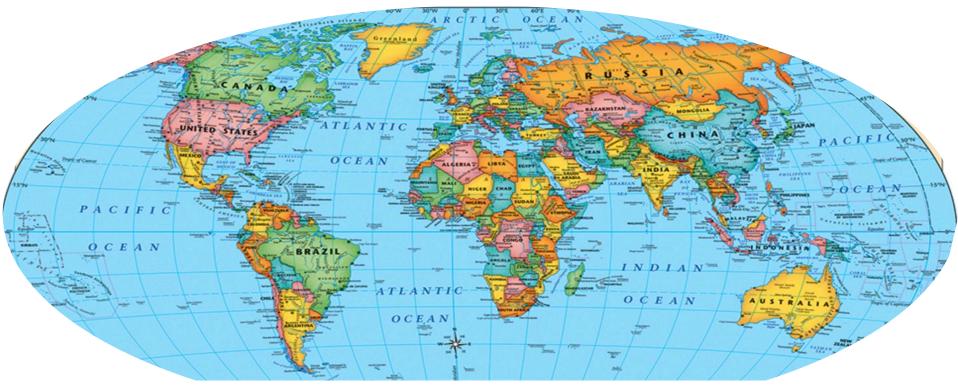
- → The next facility must have a reach as broad and powerful as possible,
 - → more Sensitivity, more Precision, more Energy

Circular machines, thanks to synergies and complementarities between ee and hh, offers today the most versatile and adapted response to today's physics landscape

at Circular Colliders → Rich e⁺e⁻ Physics Program ...

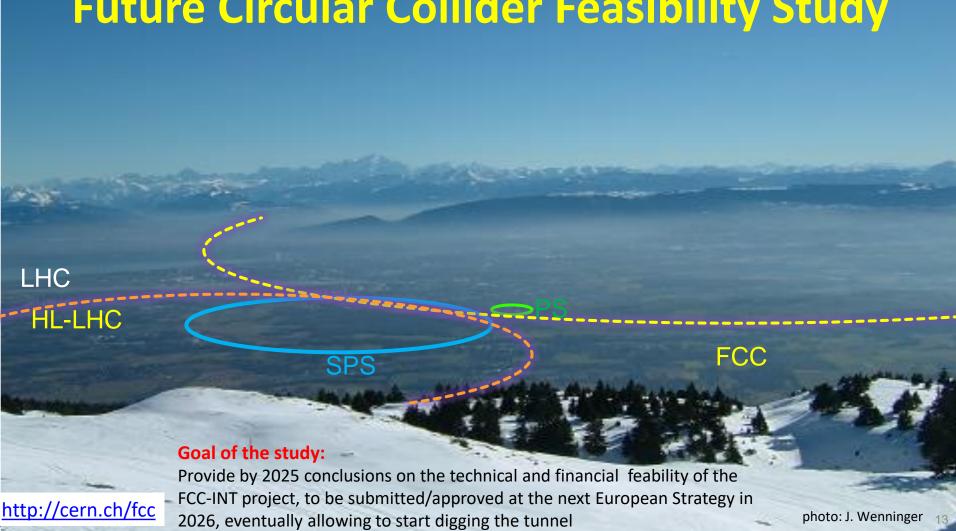
...plus an excellent hh program beyond ee Circular Colliders

The potential of an hh machine at the energy frontier in the same circular tunnel is also excellent:


- Measurement of Higgs Self-coupling at the 3 to 4% level
- Highest reach in sensitivity for di-higgs studies, dark matter searches and more
- New heavy particles could be directly discovered for masses up to 20-40 TeV
- Large potential also from indirect searches
- Possibility for an eh and/or Heavy-ion program at the highest energies

But we are not ready to build the *hh* machine soon, more R&D on the magnets is needed, and reaching the high energy frontier with a Muon Collider could take even more time, if proven possible

→ European Strategy recommendations in 2020

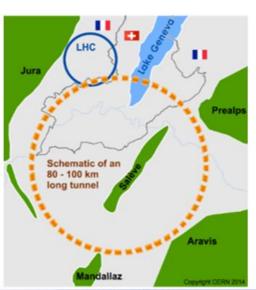


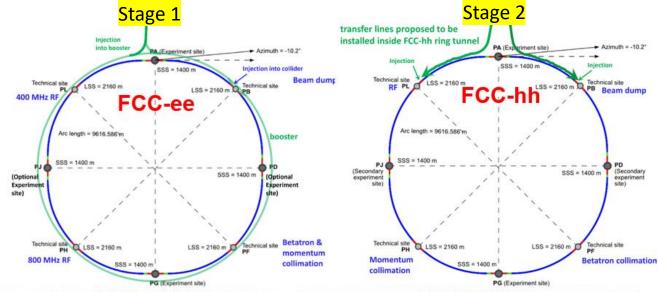
→ Recommendations from the European Strategy for Particle Physics (2020):

- "Europe, together with its international partners, should investigate the technical and financial feasibility of a future hadron collider at CERN with a centre-of-mass energy of at least 100 TeV, with an electron-positron Higgs and electroweak factory as a possible first stage."
- "Such a feasibility study of the colliders and related infrastructure should be established as a **global endeavour** and be completed on the timescale of the next Strategy update."

Future Circular Collider Feasibility Study

The FCC integrated program (FCC-INT) at CERN is inspired by the successful LEP – LHC (1976-2041) program


Comprehensive cost-effective program maximizing physics opportunities

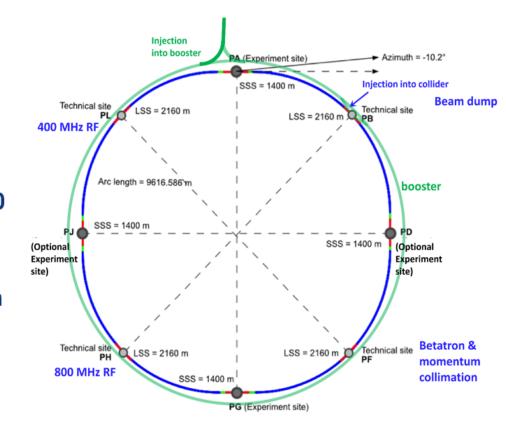

- Stage 1: FCC-ee (Z, W, H, tt) as first generation Higgs, EW and top factory at highest luminosities.
- Stage 2: FCC-hh (~100 TeV) as natural continuation at energy frontier, with heavy ions and eh options.

Complementary physics

- Integrating an ambitious high-field magnet R&D program
- Common civil engineering and technical infrastructures
- Building on and reusing CERN's existing infrastructure.

The FCC-INT project is fully integrated with HL-LHC exploitation and provides a natural transition for higher precision and energy

Double ring e+ e- collider

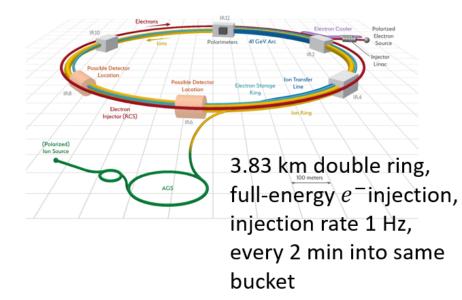

Common footprint with FCC-hh, except around IPs

Asymmetric IR layout and optics to limit synchrotron radiation towards the detector

2 or 4 IPs, large horizontal crossing angle 30 mrad, crab-waist collision optics (layouts with 4 IPs under study now)

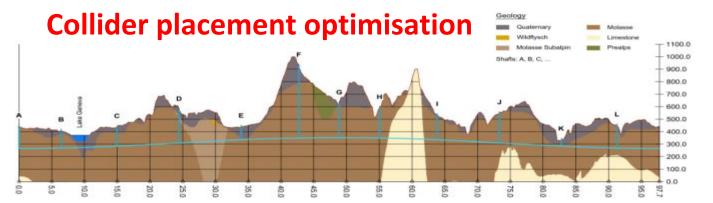
Synchrotron radiation power 50 MW/beam at all beam energies

Top-up injection scheme for high luminosity Requires **booster synchrotron in collider tunnel**

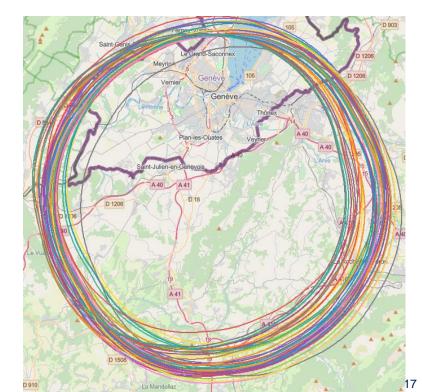

Electron Ion collider (EIC) synergies with FCC

US EIC Electron Storage Ring similar to, but more challenging than, FCC-ee beam parameters almost identical, but twice the maximum electron beam current, or half the bunch spacing, and lower beam energy

~10 areas of common interest identified by the FCC and EIC design teams, addressed through joint EIC-FCC working groups.

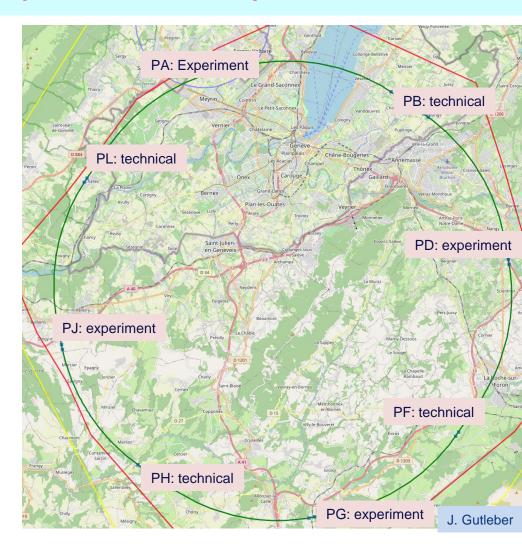

EIC will start beam operation about a decade prior to FCC-ee

The EIC will provide another invaluable opportunity to train the next generation of accelerator physicists on an operating collider, to test hardware prototypes, beam control schemes, etc.



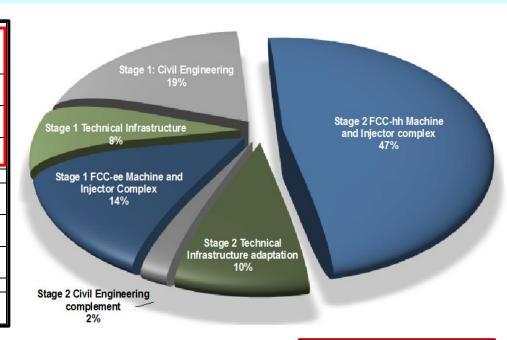
	EIC	FCC-ee-Z
Beam energy [GeV]	10 (18)	45.6 (80)
Bunch population [10 ¹¹]	1.7	1.7
Bunch spacing [ns]	10	15, 17.5 or 20
Beam current [A]	2.5 (0.27)	1.39
SR power / beam /meter [W/m]	7000	600
Critical photon energy [keV]	9 (54)	19 (100)

- Overall layout and placement optimisation process across both host states that follows the "avoid-reduce-compensate" directive according to European and French regulatory frameworks.
 - Process integrates requirements and constraints, such as
 - · civil engineering technical feasibility and subsurface constraints
 - territorial constraints at surface and subsurface
 - nature, accessibility, technical infrastructure and resource needs and constraints
 - economic factors including the development of benefits for and synergies with the regional developments
- Work takes place as a collaborative effort by technical experts at CERN, consultancy companies and government notified bodies


FCC: optimized placement and layout

Following extensive placement review, choice made

8-site baseline "PA31"


Number of surface sites	8
LSS@IP (PA, PD, PG, PJ)	1400 m
LSS@TECH (PB, PF, PH, PL)	2143 m
Arc length	9.6 km
Sum of arc lengths	76.9 m
Total length	91.1 km

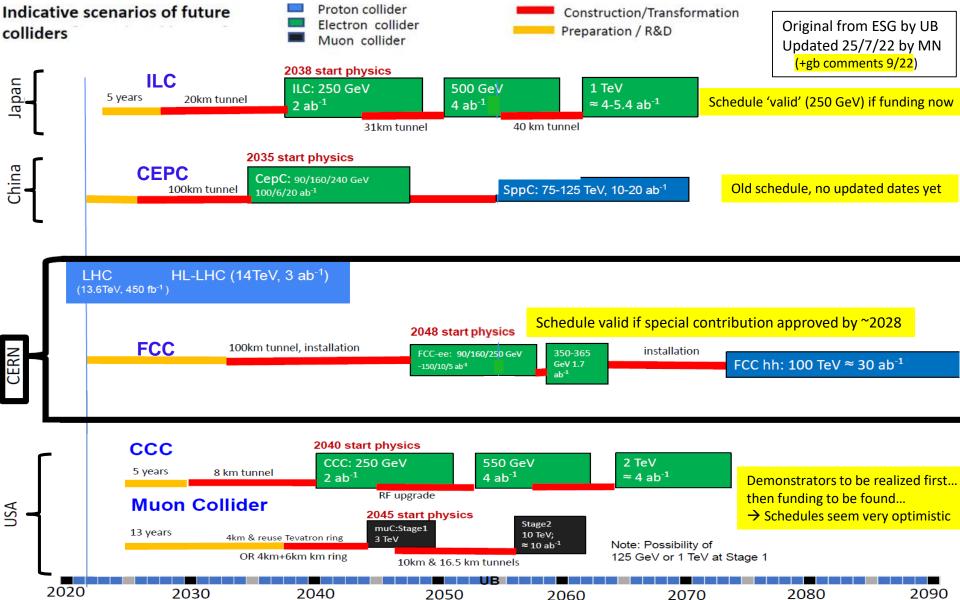
- 8 sites less use of land, <40 ha instead 62 ha
- Possibility for 4 experiment sites in FCC-ee
- All sites close to road infrastructure (< 5 km of new road constructions for all sites)
- Vicinity of several sites to 400 kV grid lines
- Good road connection of PD, PF, PG, PH suggest operation pole around Annecy/LAPP
- Exchanges with ~40 local communes in preparation

FCC-ee and FCC-INT cost estimates

Domain	Cost in MCHF
Stage 1 - Civil Engineering	5,400
Stage 1 - Technical Infrastructure	2,200
Stage 1 - FCC-ee Machine and Injector Complex	4,000
Stage 2 - Civil Engineering complement	600
Stage 2 - Technical Infrastructure adaptation	2,800
Stage 2 - FCC-hh Machine and Injector complex	13,600
TOTAL construction cost for integral FCC project	28,600

Total construction cost FCC-ee (Z, W, H) amounts to 10.5 BCHF + 1.1 BCHF (tt)

- Associated to a total project duration of ~20 years (2028 – 2048)



Need for the tunnel a special contribution of about 5 BCH.

19

Total construction cost for subsequent FCC-hh amounts to 17 BCHF.

- Associated to a total project duration of ~25 years (2040 2065)
- (FCC-hh standalone would cost ~25 BCHF, so not building FCC-ee in a first stage would be a marginal saving)

FCC feasibility study organization -

Approved by CERN Council September 2021

COLLIDER					30	eptember 2021		
FCC Study Leader	Study support and coordination							
the state of the s	dy/collaboration secretariat	study support unit EU projects		collaboration buil E. Tsesmelis		Communications J. Gillies (local com.		
Physics, experiments and detectors P. Janot, C. Grojean	Accelerators T. Raubenheimer, F. Zimmermann	techn. ir	coordination nfrastructure . Hanke	and civil er	processes ngineering (1 Nov. '21)	Organisation and financing models P. Collier (interim)		
physics programme M. McCullough, F. Simon	ee design K. Oide, A. Chance	Electricity dist	ribution JP. Burne	et administrativ F. Eder, J.	ve processes Gutleber	project organisation mo NN		
detector concepts M. Dam, F Sefkow, P.Rolo	hh design M. Giovannozzi	cooling & ve	entilation G. Peon	placemer J. Gutleber,		financing model F. Sonnemann		
physics performance P. Azzi, E. Perez	technology R&D R. Losito		stallation, transpor so, C Colloca, C Pra			procurement strategy a rules NN		
software and computing G. Ganis, C. Helsens	ee injector P. Craievich, A. Grudiev		y, access, radiation tion, T. Otto	tunnel, subsu J. Ost	orface design	in-kind contributions NN		
ee MDI M. Boscolo, M. Sullivan		Computing, controls, communication, networks D. Duellmann		ion, surface build N		operation model P. Collier & J. Wenning		
	ee energy calibration & polarization (EPOL) J. Wenninger A. Blondel		esy & survey Durand, A. Wieser	surface sites acces	•			
		Cryogenics sy	ystems L.P. Delpra	:				
			ntenance, availabil ity J. Nielsen	ity,				

Status of Global FCC Collaboration

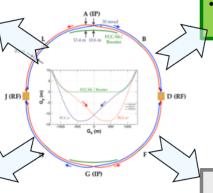
Collaboration continues to grow

- Accelerator side

- Physics, Experiments and Detectors

Detector requirements (present status)

M. Dam ECFA R&D road map input https://indico.cern.ch/event/994685/


"Higgs Factory" Programme

- Momentum resolution of $\sigma_{pT}/p_T^2 \simeq 2 \times 10^{-5} \, \text{GeV}^{-1}$ commensurate with $\mathcal{O}(10^{-3})$ beam energy spread
- Jet energy resolution of 30%/VE in multi-jet environment for Z/W separation
- Superior impact parameter resolution for c, b tagging

rare H decays (e.g. H $\rightarrow \gamma + \phi/\psi/Y$) may benefit from high resolution EM calorimeter

Heavy Flavour Programme

- Superior impact parameter resolution: secondary vertices, tagging, identification, life-time measts.
- ECAL resolution at the few %/ VE level for inv. mass of final states with π^0 s or γ s
- Excellent π^0/γ separation and measurement for tau physics
- PID: K/π separation over wide momentum range for b and τ physics

Ultra Precise EW Programme

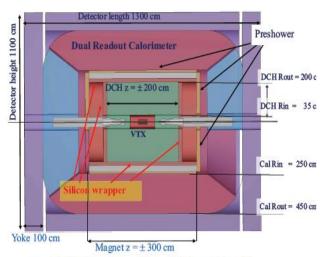
- Absolute normalisation (luminosity) to 10⁻⁴
- Relative normalisation (e.g. $\Gamma_{had}/\Gamma_{\ell}$) to 10^{-5}
- Momentum resolution "as good as we can get it"
 - Multiple scattering limited
- Track angular resolution < 0.1 mrad (BES from μμ)
- Stability of B-field to 10⁻⁶: stability of vs meast.

lumi and R_{ℓ} require precision fiducial volume definitions (1-10microns)

Feebly Coupled Particles - LLPs

Benchmark signature: $Z \rightarrow vN$, with N decaying late

- Sensitivity to far detached vertices (mm → m)
 - Tracking: more layers, continous tracking
 - Calorimetry: granularity, tracking capability
- Large decay lengths ⇒ extended detector volume
- Hermeticity



Detectors under Study

CLD

Yoke

IDEA

Noble Liquid ECAL

conceptually extended from the CLIC detector design

- full silicon tracker
- 2T magnetic field
- high granular silicon-tungsten ECAL
- high granular scintillator-steel HCAL
- instrumented steel-yoke with RPC for muon detection

explicitly designed for FCC-ee/CepC

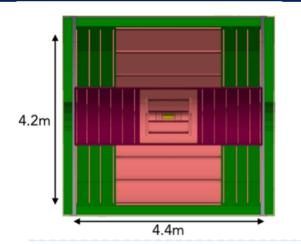
- silicon vertex
- low X₀ drift chamber
- drift-chamber silicon wrapper
- MPGD/magnet coil/lead preshower
- dual-readout calorimeter: lead-scintillating/ cerenkhov fibers

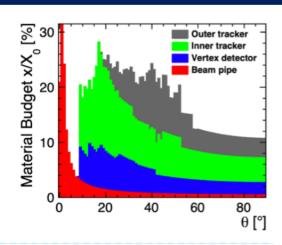
explicitely designed for FCC-ee, recent concept, under development

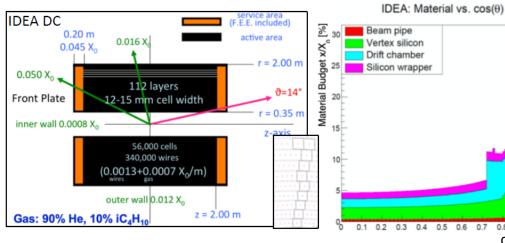
- silicon vertex
- Low X₀ drift chamber
- Thin Solenoid before the Calorimeter
- High Granularity Liquid Argon Calorimetry

But several other options like Crystal Calorimetry (active in US, Italy), are under study (similarly for tracking, muons and particle ID)

With potentially 4 experiments, many complementary options will be implemented


Tracking


Two solutions under study

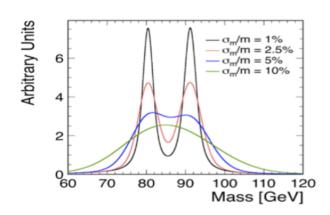

- ◆ CLD: All silicon: pixel VTX + strips tracker
 - □ Inner: 3 (7) barrel (fwd) layers (1% X₀ each)
 - □ Outer: 3 (4) barrel (fwd) layers (1% X₀ each)
 - \square Separated by support tube @ r= 675 mm (2.5% X_0)

- \Box GAS: 90% He 10% iC₄H₁₀
- □ Radius 0.35 2.00 m
- □ Total thickness: 1.6% of X₀ at 90°
 - Tungsten wires dominant contribution
- □ Full system includes Si VXT and Si "wrapper"

Gregorio Bernardi APC - Paris

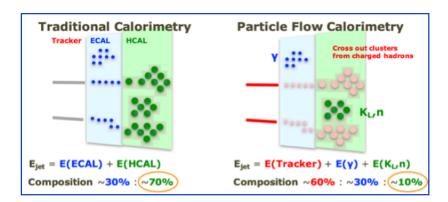
cos 🖯

Calorimetry – Jet Energy Resolution


Energy coverage \lesssim 180 GeV : 22 X₀, 7 λ

Jet energy: $\delta E_{\rm jet}/E_{\rm jet} \simeq 30\% / VE [GeV]$

⇒ Mass reconstruction from jet pairs


Resolution important for control of (combinatorial) backgrounds in multi-jet final states

- Separation of HZ and WW fusion contribution to vvH
- HZ → 4 jets, tt events (6 jets), etc.
- At $\delta E/E \simeq 30\%$ / $\forall E$ [GeV], detector resolution is comparable to natural widths of W and Z bosons

To reach jet energy resolutions of ~3%, detectors employ

- highly granular calorimetry
- Particle Flow Analysis techniques

Technologies being pursued

- a) **CALICE** like extremely fine segmentation (ILC, CLIC, CLD)
 - ECAL: W/Si or W/scint+SiPM
 - HCAL: steel/scint+SiPM or steel/glass RPC
- b) Parallel fiber dual readout calorimeter (IDEA)
 - Fine transverse segmentation; longitudinal inf. via timing
- Noble Liquid (e.g. LAr) ECAL + CALICE-like HCAL
 - Fine segmentation, high stability, $\delta E_{FM}/E_{FM} \sim 6-9\%$

ILD and FCC

Ties Behnke

9.2.2023

Gregorio Bernardi APC - Paris

ILD as a group got started around 2008

ILD's roots are linear colliders, ILC in particular

ILD's main objective is to develop the best possible experiment for a Higgs/ Electroweak and beyond facility

Result of recent membership confirmation:

- 58 institutes confirmed ILD membership
- Around 10 institutes as guests members

ILD has a concept of the detector,

The main components of ILD have been validated and

with technological options where

A coherent System design has

A complete and detailed

ILD is very interested to contribute to the studies of such detectors at Geant4 model of ILD exists linear and circular collider concepts, to develop the best possible and is used experimental proposal for a future Higgs factory

been developed.

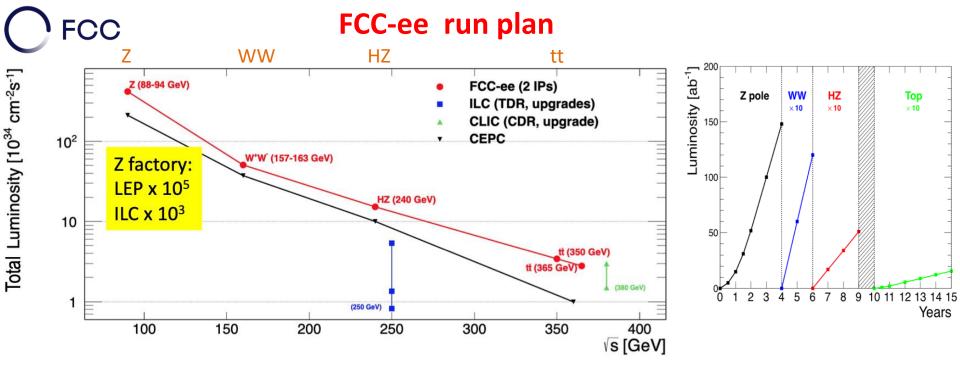
well defined

beam-tested.

PID in TPC Timing as additional handle A quarter view of ILD **ILD**

The central guiding principle for the

Particle Flow:


design of ILD: Granularity

Hermeticity

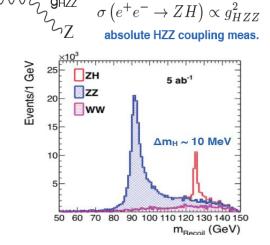
Low material inner region Very thin Silicon

Large volume TPC

Particle ID is important

Phase	Run duration	Center-of-mass		Integrated	Event	Extracted from
	(years)	Energies (GeV)	Lu	iminosity (ab ⁻¹)	Statistics	
FCC-ee-Z	4	88-95 ±<100) KeV	150	3×10^{12} visible Z decays	LEP * 10 ⁵
FCC-ee-W	2	158-162 <200	KeV	12	10 ⁸ WW events	LEP * 2.10 ³
FCC-ee-H	3	240 ±1N	1eV	5	10 ⁶ ZH events	Never done
FCC-ee-tt	5	345-365 ±2 N	1eV	1.5	$10^6 \mathrm{t\overline{t}}$ events	Never done

⁺ possible Run at the H pole (125 GeV) to access the Hee Yukawa coupling (never done, not doable anywhere else)



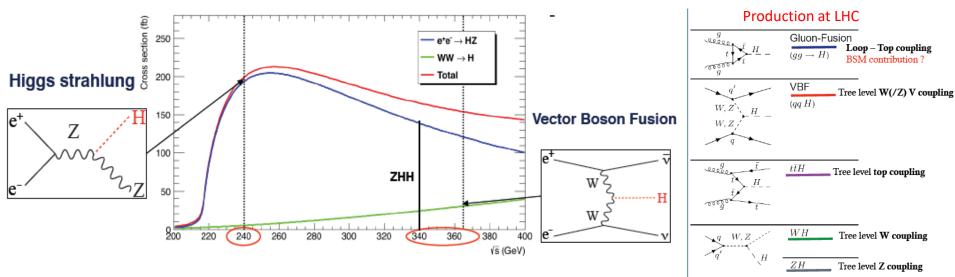
Physics of the Higgs boson at FCC-ee

Baseline (2IP): at 240 and 365 GeV, collect in total 1.2M ZH events and 0.1M WW→H events

Statistics-limited measurements:

- Higgs couplings to fermions & bosons
 - →Model-independent measurements, normalized to e+e- →ZH cross-section
 - \rightarrow fixed candle (H \rightarrow ZZ) for past and future (FCC-hh) studies at hadron colliders
- Higgs properties: CP violation, H→ gg , Higgs width, Higgs mass

• Close to discovery level:


- Higgs self-coupling via loop diagrams:
 - → complementarity to HH production at higher energy machines, like HL-LHC, or later FCC-hh

Unique possibility studied at FCC-ee:

Measure Higgs to electron coupling in s-channel production e+e-→H @ vs = 125 GeV highly demanding on luminosity, monochromatization with 2 or 4 IPs?
 → test of first generation yukawa coupling

Higgs boson production at FCC-ee

FCC-ee as a Higgs factory:

Higgs-strahlung (e+e \rightarrow ZH): event rate & Signal/Bkgd are optimal at \sqrt{s} ~ 240 GeV : σ ~200 fb

- 1.2 \times 10⁶ e+e- \rightarrow ZH events with 5 ab⁻¹
- Target: (few) per-mil precision, statistics-limited.
- Complemented with ~100k events at $\sqrt{s} = 350 365$ GeV (of which 30% are via the WW fusion channel)
 - → useful for measuring self-coupling and Γ_H precisely.
- The Higgs-strahlung process is an s-channel process → maximal just above the threshold of the process
- Vector Boson Fusion is a t-channel process which yields a cross section that grows logarithmically with the c-o-mass energy

The Higgs boson is also produced in association with fermion pair for instance, a top quark pair.

Couplings Measurements Comparison across Machines

Collider	HL-LHC	ILC ₂₅₀	CLIC ₃₈₀	LEP3 ₂₄₀	CEPC ₂₅₀		FCC-ee ₂₄₀₊₃₆₅		
Lumi (ab ⁻¹)	3	2	1	3	5	5_{240}	$+1.5_{365}$	+ HL-LHC	
Years	25	15	8	6	7	3	+4		
δΓ _H /Γ _H (%)	SM	3.6	4.7	3.6	2.8	2.7	1.3	1.1	
$\delta g_{\mathrm{HZZ}}/g_{\mathrm{HZZ}}$ (%)	1.5	0.3	0.60	0.32	0.25	0.2	0.17	0.16	
$\delta g_{\mathrm{HWW}}/g_{\mathrm{HWW}}$ (%)	1.7	1.7	1.0	1.7	1.4	1.3	0.43	0.40	
$\delta g_{ m Hbb}/g_{ m Hbb}$ (%)	3.7	1.7	2.1	1.8	1.3	1.3	0.61	0.56	
$\delta g_{ m Hcc}/g_{ m Hcc}$ (%)	SM	2.3	4.4	2.3	2.2	1.7	1.21	1.18	
$\delta g_{\mathrm{Hgg}}/g_{\mathrm{Hgg}}$ (%)	2.5	2.2	2.6	2.1	1.5	1.6	1.01	0.90	
$\delta g_{\rm HTT}/g_{\rm HTT}$ (%)	1.9	1.9	3.1	1.9	1.5	1.4	0.74	0.67	
$\delta g_{\rm H} \mu \mu / g_{\rm H} \mu \mu$ (%)	4.3	14.1	n.a.	12	8.7	10.1	9.0	3.8	
$\delta g_{\rm H}\gamma\gamma/g_{\rm H}\gamma\gamma$ (%)	1.8	6.4	n.a.	6.1	3.7	4.8	3.9	1.3	
$\delta g_{ m Htt}/g_{ m Htt}$ (%)	3.4	_	_	_	_	_	_	3.1	
BR _{EXO} (%)	SM	< 1.7	< 2.1	< 1.6	< 1.2	< 1.2	< 1.0	< 1.0	

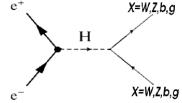
LHC caveats:

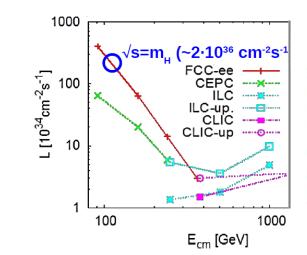
- Measure only couplings ratios
- Many SM couplings cannot be seen at LHC (light quarks, charm, electrons)
- Couplings to gluons are measured through gg→H production cross section

The precisions on these **FCC-ee** couplings are given for 2 IP.
They will improve by ~30% with 4IP

32

HL-LHC will produce many more Higgs than FCC-ee, hence dominate precisions for H $\mu\mu$, H $\gamma\gamma$, Htt

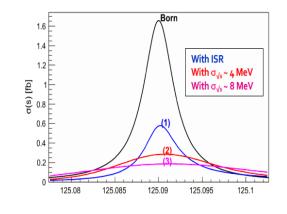

Yukawa coupling to electrons via s-channel e+e- → H production


First generation Yukawa coupling will not be accessible at HL-LHC, FCC-hh or any other ee machine

- Higgs decay to e⁺e is unobservable: BR($H\rightarrow e^+e^-$) $\propto m_e^2 \approx 5 \cdot 10^{-9}$
- Resonant Higgs production considered so far only for muon collider: $\sigma(\mu\mu\rightarrow H)\approx 70 \text{ pb.}$ Tiny κ_e Yukawa coupling \Rightarrow Tiny $\sigma(ee\rightarrow H)$:

$$\sigma(e^{+}e^{-} \rightarrow H) = \frac{4\pi\Gamma_{H}^{2}Br(H \rightarrow e^{+}e^{-})}{(\hat{s} - M_{H}^{2})^{2} + \Gamma_{H}^{2}M_{H}^{2}} = 1.64 \text{ fb (m}_{H} = 125 \text{ GeV, } \Gamma_{H} = 4.2 \text{ MeV)}$$

■ Huge luminosities available at FCC-ee:



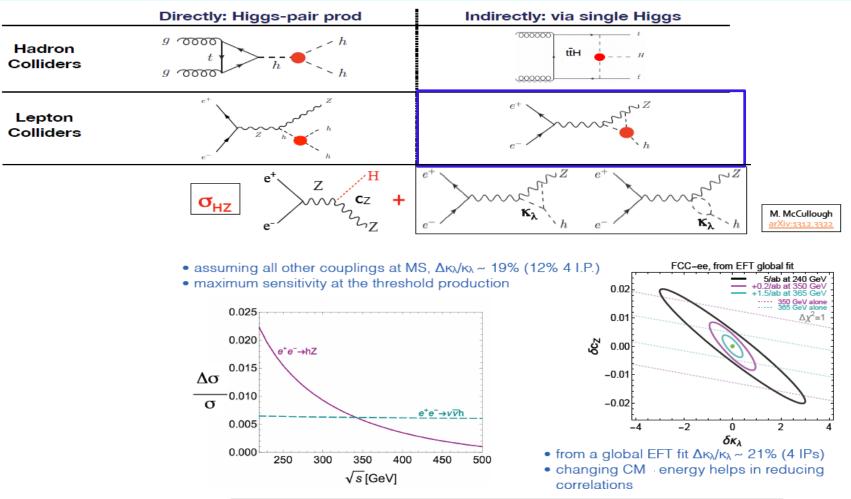
In theory, FCC-ee running at H pole-mass L_{int} ≈20 ab⁻¹/yr would produce O(30.000) H's

IF we can control: (i) beam-energy spread, (ii) ISR, and (iii) huge backgrounds, then:

- → Electron Yukawa coupling measurable.
- → Higgs width measurable (threshold scan)?
- → Separation of possible nearly-degen. H's?
 Most significant channel: e⁺e⁻→H→gg

ii final state

Physics of the Higgs boson at FCC-ee

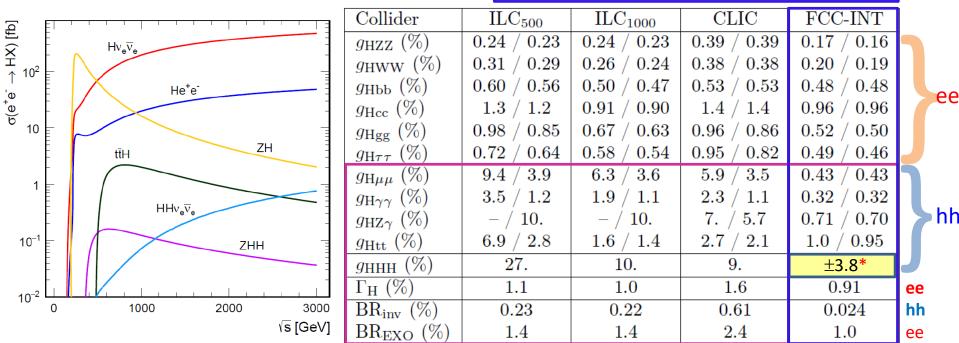

Higgs measurements that are already studied at FCC-ee:

- $\sigma(ZH)$ and mH from Higgs recoil, $Z \rightarrow II$
- Higgs couplings to b, c, g, s
- Higgs to invisible
- Higgs self-coupling from precise $\sigma(ZH)$ measurements at 240 and 365 GeV
- ee → H production in s-channel at 125 GeV
- $\sigma(ZH)$ in $Z \rightarrow qq$ (starting)

Higgs measurements which are not studied yet:

Measurement	Requirements
Direct reconstruction of mH in hadronic final states	jet angular resolution, kinematic fits, b-tag effi & purity (Possible link with meas. of $\sigma(ZH)$ in $Z \rightarrow qq$)
Γ(H) • H → ZZ • ZH(WW), ZH(bb), ννH(bb)	Lepton ID efficiencies; jet clustering algorithms, jet directions, kinematic fits Visible and missing mass resolutions [expression of interest, but many channels]
HZγ coupling (production and decay)	photon identification, energy and angular scale
Rare decays: $H \rightarrow \gamma \gamma$ and $H \rightarrow \mu \mu$ (unlikely to do better than HL-LHC)	Photon ID and resolution, track resolution
H → $ττ$ and CP studies	Tau reconstruction, Pi0 id

Measurement of the Higgs self-coupling



50% sensitivity: establish that h³≠0 at 95%CL
20% sensitivity: 5σ discovery of the SM h³ coupling
5% sensitivity: getting sensitive to quantum corrections to Higgs potential

Higgs with High Energy colliders: ILC₅₀₀₋₁₀₀₀, CLIC₃₀₀₀, FCC-INT

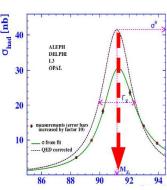
*arXiv:2004.03505

FCC-hh > 10¹⁰ H produced

+

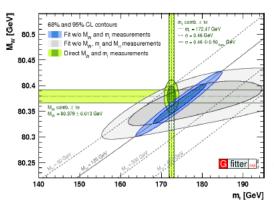
FCC-ee measurement of g_{H77}

 \rightarrow g_{HHH}, g_{HYY}, g_{HZY}, g_{Hµµ}, Br_{inv} at high precision


The Tera-Z program at the Z peak and Electroweak Physics

The electroweak program at the Z peak and at the WW threshold is quite unique, most challenging, and could be the most promising part of the program given the statistics!

- L = 230/cm²/s and 35 nb of Z cross section corresponds to 80 kHZ of events with typically 20 charged and 20 neutral particles (all to be fully recorded, stored, reconstructed)
- 3 years at 10^7 s /year = 2.4 10^{12} evts/exp. \rightarrow 10^5 LEP Statistics (~ 10^3 more than ILC)


For the electroweak program we will also have

• 2 years at the WW threshold, 10⁸ events/exp. → 2.10³ LEP Statistics

- m₂: position of Z peak
- Beam energy measured with extraordinary precision (△√s≈100 keV) using resonant depolarization of transversely polarized beams (method already used at LEP, much better prepared now, calibrations in situ with pilot bunches, no energy extrapolations, ...)
- Beam width/asymmetries studied analyzing the longitudinal boost distribution of the μμ system
- Expected precisions in a nutshell:
- $\circ \quad \approx 10^{-4}$ on cross sections (aimed luminosity uncertainty); possibility to reduce it
- by an order of magnitude using the measured σ(ee→γγ) as reference
 ≈ 10⁻⁶ statistical uncertainties (≈ 1/√N) on relative measurements like forward-backward charge asymmetries
- Ultimate uncertainties typically dominated by systematics; precious value of "Tera" Z samples to study / constrain many of those uncertainties

With m_{top} , m_W and m_H fixed by measurements: the SM has nowhere to go!

Increased precision could show first hints of physics beyond the SM.

- Improve the direct determination of MW and Mtop
 - PDG 2020: MW to 12 MeV
- And the SM fit prediction for these quantities, e.g.:

$$m_{\mathrm{W}} = 80.3584 \pm 0.0055_{m_{\mathrm{top}}} \pm 0.0025_{m_{\mathrm{Z}}} \pm 0.0018_{\alpha_{\mathrm{QED}}}$$

 $\pm 0.0020_{\alpha_{\mathrm{S}}} \pm 0.0001_{m_{\mathrm{H}}} \pm 0.0040$. GeV
 $= 80.358 \pm 0.008_{\mathrm{total}}$ GeV,

Requires improved measurements of m_{top} , m_Z , $\alpha_{QED}(m^2_Z)$, α_S ... and more generally all usual EWPO included in the EW fits.

FCC

Observable

 $m_Z \text{ (keV)}$

 $\Gamma_{\rm Z} \; ({\rm keV})$

 $\sin^2 \theta_W^{\text{eff}} (\times 10^6)$

Statistical Systematics opportunities challenges

FCC-ee

Stat.

4

4

 $\mathbf{2}$

present

value \pm error 91186700 ± 2200

 2495200 ± 2300

 231480 ± 160

FCC-ee

Syst.

100

25

2.4

Comment and

leading exp. error

From Z line shape scan

From Z line shape scan

from $A_{FB}^{\mu\mu}$ at Z peak

Beam energy calibration

Beam energy calibration

Beam energy calibration

Uncertainties in EWPO

Systematics on the Electroweak Precision Observables in the table are preliminary and often largely dominant

We use the statistical errors (after selection efficiencies and background subtractions) as the best way to assess the physics potential of a facility, since the systematic uncertainties get generally reduced making clever use of the statistics and additional theoretical calculations

We are concentrating now on finding the potential 'show stoppers' or 'stumbling blocks', to guide the detector R&D and detector requirements.

Strong support for theoretical calculations will be needed if the program is to be successful


Theory work is critical and initiated (1809.01830)

$1/\alpha_{\rm QED}(m_{\rm Z}^2)(\times 10^3)$	128952 ± 14	3	$_{ m small}$	from $A_{FB}^{\mu\mu}$ off peak
•				QED&EW errors dominate
$R_{\ell}^{Z} (\times 10^{3})$	20767 ± 25	0.06	0.2-1	ratio of hadrons to leptons
				acceptance for leptons
$\alpha_{\rm s}({\rm m_Z^2})~(\times 10^4)$ $\sigma_{\rm had}^0~(\times 10^3)~({\rm nb})$	1196 ± 30	0.1	0.4 - 1.6	from R_ℓ^Z above
$\sigma_{\rm had}^0 \ (\times 10^3) \ ({\rm nb})$	41541 ± 37	0.1	4	peak hadronic cross section
				luminosity measurement
$N_{\nu}(\times 10^3)$	2996 ± 7	0.005	1	Z peak cross sections
				Luminosity measurement
$R_b (\times 10^6)$	216290 ± 660	0.3	< 60	ratio of $b\bar{b}$ to hadrons
				stat. extrapol. from SLD
$A_{FB}^{b}, 0 (\times 10^{4})$	992 ± 16	0.02	1-3	b-quark asymmetry at Z pole
				from jet charge
$A_{FB}^{pol,\tau}$ (×10 ⁴)	1498 ± 49	0.15	<2	τ polarization asymmetry
				τ decay physics
τ lifetime (fs)	290.3 ± 0.5	0.001	0.04	radial alignment
$\tau \text{ mass (MeV)}$	1776.86 ± 0.12	0.004	0.04	momentum scale
τ leptonic $(\mu\nu_{\mu}\nu_{\tau})$ B.R. (%)	17.38 ± 0.04	0.0001	0.003	e/μ /hadron separation
$m_W \text{ (MeV)}$	80350 ± 15	0.25	0.3	From WW threshold scan
				Beam energy calibration
$\Gamma_{W} \text{ (MeV)}$	2085 ± 42	1.2	0.3	From WW threshold scan
				Beam energy calibration
$\alpha_s(m_W^2)(\times 10^4)$ $N_{\nu}(\times 10^3)$	1170 ± 420	3	$_{ m small}$	from R_{ℓ}^{W}
$N_{\nu}(\times 10^3)$	2920 ± 50	0.8	$_{ m small}$	ratio of invis. to leptonic
				in radiative Z returns
$m_{top} (MeV/c^2)$	172740 ± 500	17	$_{ m small}$	From $t\bar{t}$ threshold scan
				QCD errors dominate
$\Gamma_{\text{top}} (\text{MeV/c}^2)$	1410 ± 190	45	$_{ m small}$	From $t\overline{t}$ threshold scan
* ' '				QCD errors dominate
$\lambda_{\mathrm{top}}/\lambda_{\mathrm{top}}^{\mathrm{SM}}$	1.2 ± 0.3	0.10	small	From $t\bar{t}$ threshold scan
* *				QCD errors dominate
ttZ couplings	± 30%	0.5 - 1.59	small	From $\sqrt{s} = 365 \mathrm{GeV} \mathrm{run}$

EW & QCD precision measurement examples

	stat	w/ syst (*)	improvement
M _W	400 keV	500 keV	30
M_Z	4 keV	< 100 keV	> 20
Γ_{Z}	4 keV	< 25 keV	> 100
$\sin^2\!\theta_{\mathrm{eff}}$ ($ au$ pol)		3 10 ⁻⁶	60
$\alpha_{\rm QED}({\rm m^2_Z})$	3 10 ⁻⁵	3 10 ⁻⁵	4 (stat. lim. !)
Rb	3 10 -7	2 10-5	30
alphaS(m2Z)	105	10 ⁻⁴	30
Mtop	20 MeV	40 MeV	12

- Huge statistics: very small stat errors call for very small syst uncertainties too.
 - E.g. acceptances, should be known to 10-4 – 10-5
- Goal: σ(exp syst) ≈ σ(stat)
- Work on theo. side also critical (and initiated, 1809.01830)

One key experimental handle: knowledge of √s (exquisite at circular collider with resonant depolarisation method, at Z & WW)

In terms of weakly-coupled new physics: FCC-ee precision corresponds to sensitivity on Λ_{NP} up to 70 TeV, anticipating what FCC-pp would focus on.

EW measurements to be studied in detail:

	Measurement	Requirements	
	Total width of the Z	scale (magnetic field) stability	
	Rb, Rc, (AFB)	Flavour tagging, acceptance, QCD corrections	
peak	Ratio RI = Gamma_had / Gamma_I	Geometrical acceptance for lepton pairs	
2 ре	Tau polarisation	ECAL granularity	
7	AFB (muons)	QED corrections	
	Luminosity from diphoton events	e/gamma separation, gamma acceptance	
70	Coupling of Z to nu_e	Photon energy resolution, acceptance, track eff	
threshold	$\sigma(ee \rightarrow WW)$ and MW (threshold scan ; direct reco also above threshold)	√s determination, bckgd control; angles, kinem. fits	
	Vcb via W -> cb	Flavour tagging	
WW	W leptonic BRs	Lepton ID, acceptance	
	Meas of √s via radiative return	lepton and jet angular resolutions, acceptance	
ttbar	Top properties from threshold scan	Jet reco, b-tagging, kine fits	
tt	EW couplings of the top	Jet reco, b-tagging, kine fits	

12

9/14/22

E.Perez

Precision Top factory at 340 – 365 GeV

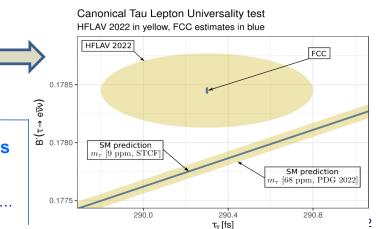
- Expect 1 M $t\bar{t}$ events, not so many compared to LHC, but in a clean environment and with the abilty to scan \sqrt{s}
- Test of Higgs mechanism via measurement of top mass and top Yukawa coupling
 - m_t measurement at FCC-ee with clear interpretation from cross section measurement near threshold
 - Simultaneous fit for m_t and Γ_t with statistical uncertainties of 17 MeV and 45 MeV respectively
 - Scale uncertainty of 45 MeV on m_t from N³LO QCD
- Extract ttZ coupling from $\sigma(e^+e^- \to Z/\gamma^* \to t\bar{t})$
 - → uncertainty ~10 times smaller than @HL-LHC
 - → key input to extract top Yukawa coupling from FCC with reduced theory uncertainty

More on TeraZ: The Flavor/Tau Factory, QCD

Progress in flavour physics w.r.t. SuperKEKb / BELLE II requires > 10¹¹ b pair events, FCC-ee(Z): will provide ~10¹² b pairs

Particle production (10 ⁹)	B^0	B^-	B_s^0	Λ_b	$c\overline{c}$	$\tau^-\tau^+$
Belle II	27.5	27.5	n/a	n/a	65	45
FCC-ee	400	400	100	100	800	220

Precision of CKM matrix elements


Observable / Experiments	Current W/A	Belle II (50/ab)	LHCb-U1 (23/fb)	FCC-ee
CKM inputs				
γ (uncert., rad)	$1.296^{+0.087}_{-0.101}$	1.136 ± 0.026	1.136 ± 0.025	1.136 ± 0.004
$ V_{ub} $ (precision)	5.9%	(2.5%)	6%	1%)
		\checkmark	FCC CDR Vol 1. Eur.Phys.	.J.C 79 (2019) 6, 474

- → Push forward searches for FCNC, CP violation and mixing
- ⇒ Study rare penguin EW transitions such as b →s τ + τ , spectroscopy (produce b-baryons, B_s ...)
- → Test lepton universality with 10¹¹ τ decays (with τ lifetime, mass, BRs) at 10⁻⁵ level, LFV to 10⁻¹⁰
 - all very important to constrain / (prOvide hints of) new BSM physics.
 - → need special detectors (PID) under study

3×10¹² hadronic Z decay also provide precious input for QCD studies

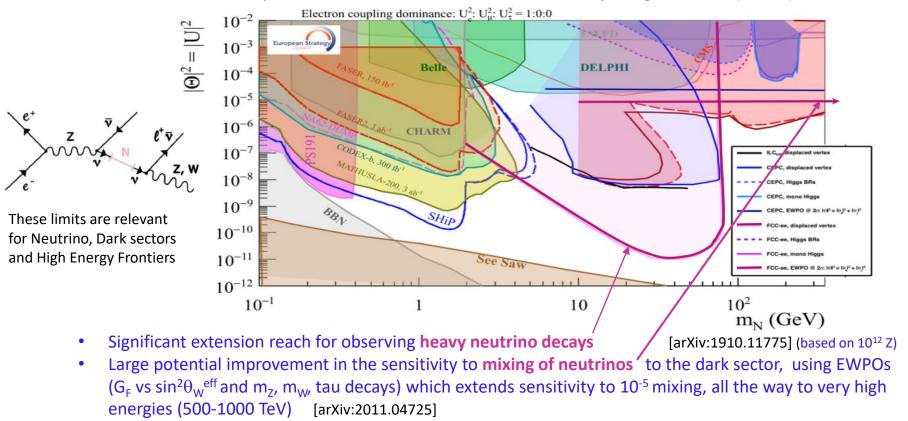
High-precision measurement of $\alpha_s(mZ)$ with R ℓ in Z and W decay, jet rates, τ decays Large \sqrt{s} lever-arm between 30 GeV and 360 GeV, fragmentation, baryon production

 \blacktriangleright Testing running of α_s and measuring α_s to excellent precision

Flavour physics measurements to be studied in detail

Measurement	Requirements
CP violation in Bs $\rightarrow \Phi\Phi$	PID, vertex, track resolution
$BO \to \pi 0\pi 0 \ (\to ee\gamma)$	Low energy γ 's in jets (ECAL resolution and granularity)
$Bs \to \tau \tau$	Vertexing
Meas of γ from B+ \rightarrow DK+	Ks reconstruction
$\tau \rightarrow 3\mu, \tau \rightarrow \mu\gamma$	resolutions
τ lifetime	Alignment, scale of vertex detector,
τ BRs	Lepton ID, PID, e/pi separation
au mass	Track reco & resolution (in multi-track collimated environment)
Charm physics	
Masses, spectroscopy, exotics	
EW parameters, exclusive modes (Vcb, etc)	Flavour tagging

Z peak



Gregorio Bernardi

Searches for Feebly Interacting particles

- We need new physics to explain the Universe puzzles without interfering with SM radiative corrections
 Searches for new feeble interactions/particles
- Dark photons, Axion Like Particles (ALP's), sterile neutrinos, are all <u>feebly coupled</u> to SM particles
- FCC-ee can be compared to the other machines for its sensitivity to right-handed (sterile) neutrinos

Summary: FCC-ee discovery potential and Highlights

FCC-ee could explore, observe and discover:

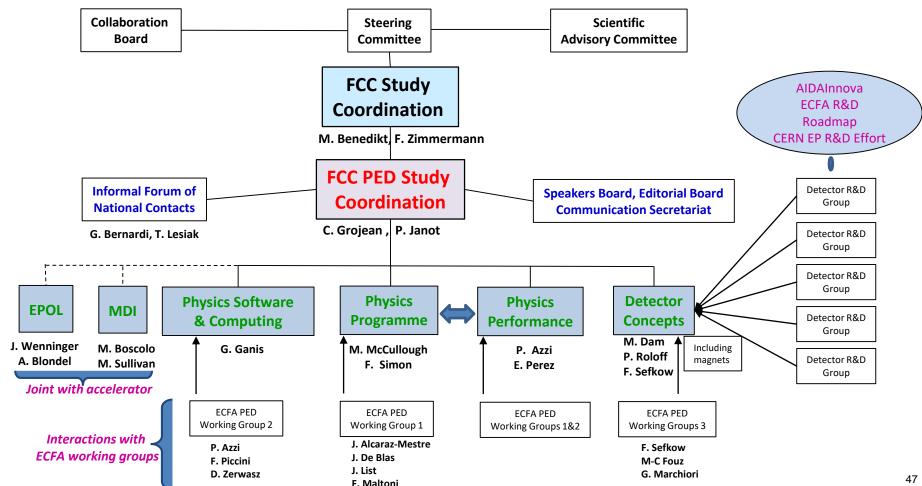
- **Explore** the 10-100 TeV energy scale (and beyond) with Precision Measurements 20-100 fold improved precision on many EW quantities (equivalent to factor 5-10 in mass) $m_{Z_s} m_W$, m_{top} , $\sin^2\theta_w^{eff}$, R_b , α_{QED} , α_s , Higgs and top quark couplings, and provide model independent Higgs measurements which can be propagated to LHC and FCC-hh
- **Observe** at the $> 3\sigma$ level, the Higgs couplings to the 1st generation, the Higgs Self-coupling
- **Discover** a violation of flavour conservation or universality and unitarity of PMNS @10⁻⁵ FCNC (Z --> $\mu\tau$, $e\tau$) in 5 10¹² Z decays and τ BR in 2 10¹¹ Z \rightarrow τ τ + flavour physics (10¹² bb events) (B \rightarrow s τ τ etc..)
- **Discover** dark matter as «invisible decay» of H or Z (or in LHC loopholes)
- **Discover** very weakly coupled particle in the 5 to 100 GeV energy scale such as: Right-Handed neutrinos, Dark Photons, ALPS, etc...
- Many other opportunities in e.g. QCD $(\alpha_s @ 10^{-4}, \text{ fragmentations, H} \rightarrow \text{gg}) \text{ etc....}$
- → Not only a Higgs Factory! Z, Heavy Flavour, QCD and top are also important for 'discovery potential'

FCC main goals until 2025

Overall goal:

• Perform all necessary steps and studies to enable a project decision by 2026/27, at the anticipated date for the next ESU, and a subsequent start of civil engineering construction by 2028/29.

This requires successful completion of the following four main activities:


- Develop and establish a governance model for project construction and operation
- Develop and establish a financing strategy, including in-kind contributions
- Prepare all required project preparatory and administrative processes with the host states
- Perform site investigations to enable Civil Engineering planning and to prepare its tendering.

In parallel development preparation of TDRs and physics/experiment studies:

- Machine designs and main technology R&D lines
- completion of first physics case studies in 2021-22 → detector requirements
- reach out to all 'European and International Partners'
- Establish user communities, work towards proto experiment collaboration by 2025/26
- LHC community can bring enormously to the project, by contributing (at a small fraction of FTE) to R&D/detector concept studies and/or by further reinforcing even further the excellent physics potential:
 - Higgs (including self-coupling and 1st generation)
 - Precision EW, top, and QCD measurements
 - Heavy Flavor Physics and Tau physics
 - LLP's detection and other BSM searches

FCC PED Organisation & Conveners and its interactions with ECFA working groups

Outlook

The next facility must be complete with as broad and powerful reach as possible, as there is no precise target → more Sensitivity, more Precision, more Energy → Circular Collider

FCC, thanks also to synergies and complementarities between ee and hh machines, offers the best approach to today's physics landscape

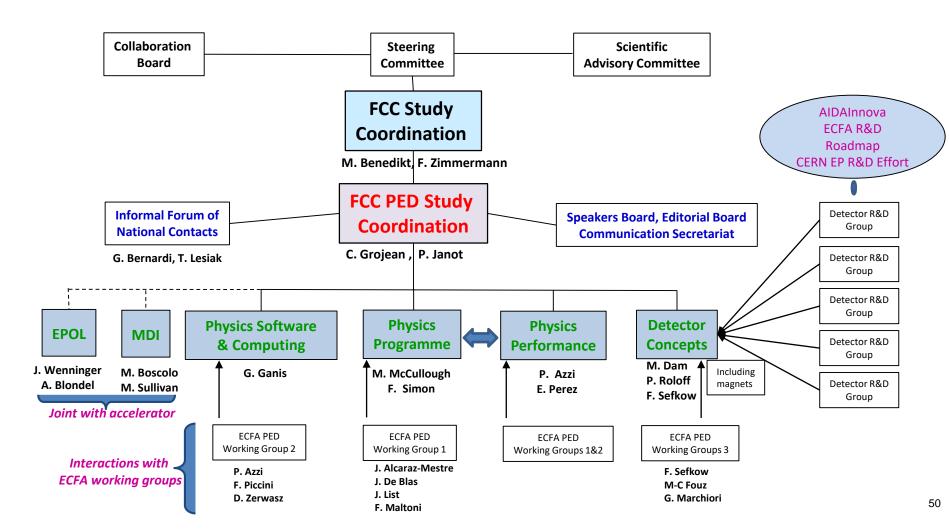
FCC-ee can be constructed while accomplishing the HL-LHC program

Many opportunities and challenges are offered by the energy range (from the Z pole to 100 TeV or more) and from the huge rates offered by the circular machines, from 10¹² Z @ FCC-ee to 10¹³ Ws and 10¹⁰ H at FCC-hh.

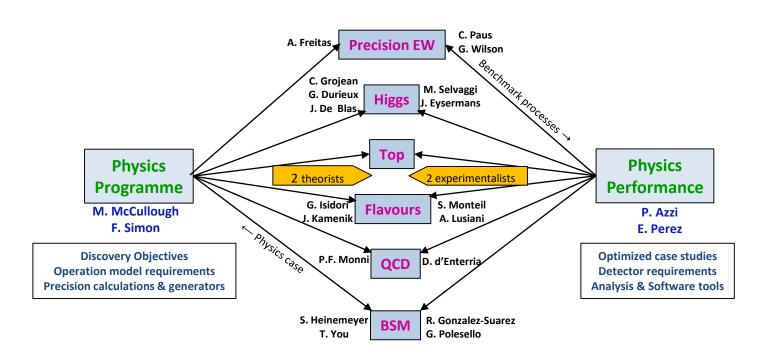
Exciting challenges on theory, experiment and accelerator

Please join the effort, the presence of all is needed to make the future of HEP and FCC happen!

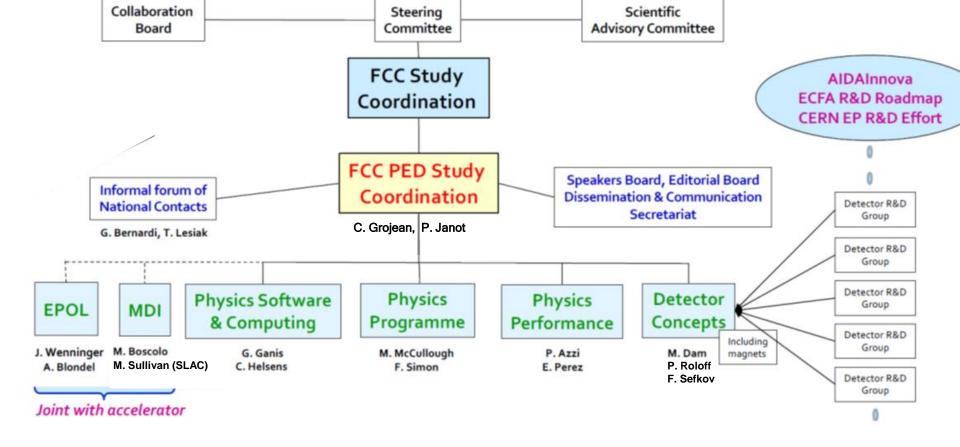
TODAY, at 12:45, special session to propose places where to get involved

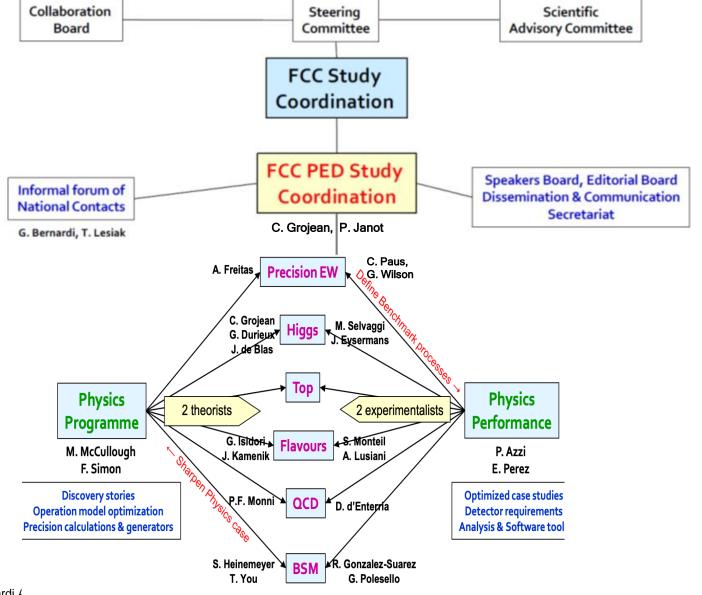

- The FCC Physics Workshop just took place in Cracow (Jan. 2023): https://indico.cern.ch/event/1066234/
- The 6th Annual FCC Week will take place in London in June 2023: https://indico.cern.ch/event/1064327/

backup

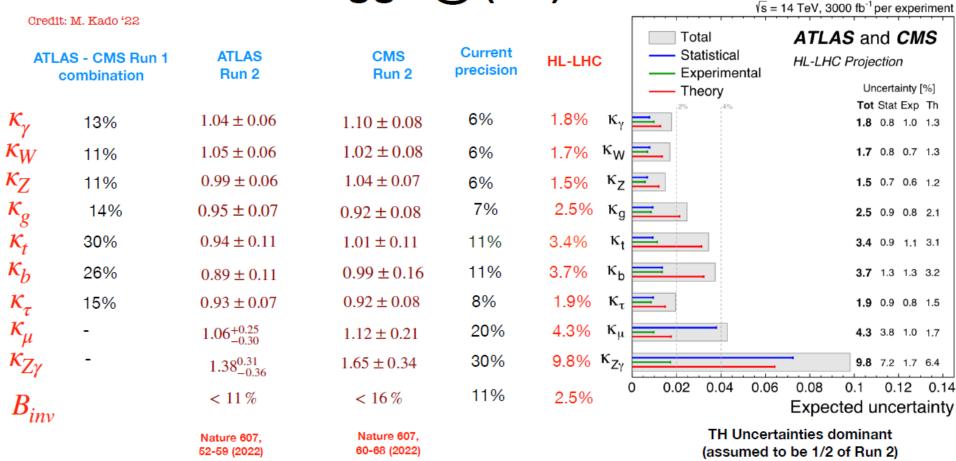


PED Organisation & Conveners


Joint Physics groups



51


51

51

Higgs @ (HL)-LHC

