

University of Massachusetts Amherst

Searches for BSM Physics in ATLAS

Rafael Coelho Lopes de Sa On behalf of the ATLAS Collaboration

LISHEP 2023 March 7th, 2023

UERJ, Rio de Janeiro, Brasil

Introduction

- The ATLAS experiment has collected over 200 fb⁻¹ of integrated luminosity at 7, 8, 13, and 13.6 TeV. Over 1,100 papers published to date, most of them searching for BSM physics.
- A 15-minutes is **necessarily** a selection of results. I will try to focus in well-motivated areas of BSM physics and recent results.

UMassAmherst

Walkthrough

- We will review three different types of searches performed with the full Run 2 dataset.
- They cover a wide range of different phenomena and showcase the capabilities of the ATLAS detector and creative novel methods used to analyze the Run 2 data.
 - Leptoquark searches: traditional topic with a recent burst of interest because of *B*-physics anomalies
 - Long-lived particles: huge BSM area with some very non-traditional analysis methods
 - Exotic Higgs decays: powerful way to access very weakly-coupled new physics that would be otherwise inaccessible
- Each of these topics have, themselves, many more exciting results. The full set of ATLAS public results can be found here: <u>https://twiki.cern.ch/twiki/bin/view/AtlasPublic/Publications</u>

Leptoquark searches

- Leptoquarks are good simple models to explain recent anomalies in data
 - Mediator of flavor-changing neutral current
 - Can violate Lepton Flavor Universality
- **Predicted** in many Grand Unification Theories: SU(5), Pati-Salam SU(4), R-parity violating SUSY
- **Connect** the quark and lepton sectors

μ

Summary of leptoquark searches

UMassAmherst

ATL-PHYS-PUB-2022-012

- Scalar and vector leptoquarks
- Parameters:
 - Mass and charge
 - (λ) Yukawa coupling
 - (β) BF into charged leptons or neutrinos
 - β = 1 couple only to charged leptons
 - $\beta = 0$ couple only to neutrinos
 - (κ) coupling to color:
 - Gauge origin, YM ($\kappa = 0$)
 - Minimal ($\kappa = 1$)

Scalar leptoquark $LQ^{\widetilde{S}_1} \rightarrow b\tau$

- Searches for singly and pair-produced scalar $LQ \rightarrow \tau + b$
- Selection: \geq 1 b-jet, 2 OS τ
 - Signal/background discrimination at high S_T
 - had-had and had-lep decay modes of the au pair
 - Dominant top quark background corrected as a function of S_T
- Limited by statistics and top background modeling

UMassAmherst

 p_T

ATL-CONF-2022-037

 $S_T =$

Scalar leptoquark $LQ^{\widetilde{S}_1} \rightarrow b\tau$

Pair-produced $LQ_3^{d(u)}LQ_3^{d(u)} \rightarrow b\tau b\tau$

- Pair-produced scalar or vector $LQ \rightarrow \tau + b$
 - Family-diagonal Yukawa coupling
- Selection: \geq 2 jets (\geq 1 b-jet), 2 OS τ
 - had-had and had-lep decay modes of the τ pair
 - Dominant top quark background corrected as a function of S_T

Parametrized NN, as a function of m_{LQ} hypothesis trained to discriminated signal and background

ATL-EXOT-2021-15

Long-lived particles

- Many BSM theories include particles with macroscopic lifetimes.
- Strong interplay between theory and experiments
 - Specific theories can suggest new signatures to explore
 - Results are presented in benchmarks but can be re-interpreted with different models

Signature-based searches

- Long-Lived Particles: non-SM particles that travel macroscopic distances
- Challenging Signatures: Does not use *standard* objects/data-flow/... and/or defy in some sense our theoretical prejudice of how new physics would appear
- **Best experimental strategy** depends on the properties of the particle

Summary of long-lived results

Standardized benchmarks help ensuring coverage across signatures

Inner tracker charged particles

- High- p_T , high-quality reconstructed track with large ionization energy loss (dE/dx, calibrated in low- μ runs)
- Triggering on missing transverse-momentum
- Entirely data-driven background estimation

- Excess observed: 3.6σ local (3.3σ global)
- Many cross-checks performed. Timing information indicates β ≈ 1.
- No obvious instrumental/analysis problem found.

UMassAmherst

ATL-SUSY-2018-042

ATLAS Preliminary

s = 13 TeV. 139 fb

 $H_T \ge 600 \text{ GeV}, E_T^{\text{miss}} \ge 600 \text{ GeV}$

and the second second second

Bin 2

Bin 3

Events

Data / Bkg

10

 10^{3}

 10^{4}

 10^{3}

10²

10

Bin 1

UMassAmherst

.....

Bin 5 Bin 6 Bin 7

3. 0.2

......

Signal M. [TeV], R.

10-10-10 P

Bin 8

Data

Multije

W+jets Z+jets

Single top

Diboson Bka, unc

Bin 4

Semi-visible jets

- Semi-visible jets from partial decays back to SM
- When additional jets boost the system, E_T^{miss} is present
- Two main observables:
 - Back-to-back jets balance
 - Missing momentum aligned with high- p_T jet

ATL-CONF-2022-038

 \overline{q}_{dark}

ark

Searches for $H(Z) \rightarrow \gamma + meson$

- Search for $H(Z) \rightarrow \gamma + Q$
 - Two contributions to the decay amplitude, direct and indirect, which interfere destructively.
 - Distinct signature avoids large QCD background seen in inclusive searches
- Higgs boson decays probe *b* and *c* Yukawa couplings
 - Sensitive to both magnitude and sign.
- *Z* boson decays provide a test of QCD factorization
 - Small power corrections in terms of the ratio of the QCD energy scale over Z mass
 - Clean probe of meson light cone distribution amplitudes from a theory perspective

Search for $H(Z) \rightarrow \psi/\Upsilon + \gamma$

Region

Generation Region

Validation Region 1

Validation Region 2

Validation Region 3

Signal Region

Data-driven parameterized simulation of inclusive background

Photon Isolation Q Isolation

Relaxed

Relaxed

Relaxed

Full

Full

 $p_{\rm T}^{\mu}$

Full

Full

> 30 GeV

> 30 GeV

> 30 GeV

Relaxed

Relaxed

Relaxed

Full

Full

(GR)

(VR1)

(VR2)

(VR3)

(SR)

UMassAmherst

ATL-HDBS-2018-053

Search for $H(Z) \rightarrow \omega/K^* + \gamma$

- Use adapted τ reconstruction to identify $\omega \rightarrow \pi^{-}\pi^{+}\pi^{0}$ decays
- Strategy used both online (trigger) and offline
- Keeps high trigger efficiency

UMassAmherst

ATL-HDBS-2019-033

- Exotic Higgs decays also sought for in the $H \rightarrow K^* \gamma$ channels (flavor-violating decay)
- Explore $K^* \to K\pi$ decay for offline reconstruction
- Trigger based on photon only

NNY

 \widetilde{Z}

UMassAmherst

Search for $ZH \rightarrow \gamma + \gamma_D$

ATL-HDBS-2019-013

Leading source of background are $Z\gamma$ events with instrumental E_T^{miss} . Estimated with ABCD method.

16

Search for $ZH \rightarrow \gamma + \gamma_D$

Dedicated BDT trained to improve signal discrimination with respect to dominant background sources.

17

Conclusions

- ATLAS has a healthy BSM search program
- In this talk, we presented three active areas of research with recent results using the full Run 2 dataset
- Many more results with Run 2 dataset are still being studied
- In the meantime, exciting new Run 3 data is being collected since 2022. And we are starting again this year!
- Run 3 comes with new developments that will enable new BSM searches
 - New detectors (NSW, ...)
 - New triggers (compressed scenarios, long-lived particles ...)
 - New reconstruction algorithms (improved vertexing, large-radius tracking, ...)
- Stay tuned!