Higgs results and prospects from ATLAS

> Jiayi Chen on behalf of the ATLAS collaboration

1

Introduction

- 10 years after the discovery, the Higgs boson remains at the core of the LHC program
- Many unexplained physics phenomenon call for the precise determination of the Higgs boson nature

- All results covered in this talk uses the ATLAS data collected in Run-2 between 2015-2018, corresponding to an integrated luminosity of 139 fb⁻¹
- During Run-2, expected amount of Higgs boson events is \sim 30 times larger than at the time of its discovery

Phys. Lett. B 716 (2012)

arXiv:2207.00320 (2022)

Overview of ATLAS Higgs results and prospects

Precise coupling measurements to unveil new physics signature for interpretation

- Combined *coupling* measurements [Nature 607 (2022)]
- Combined $H \rightarrow 4l$ and $H \rightarrow \gamma\gamma$ differential cross-section measurement [arXiv:2207.08615]
- Invisible decays of the Higgs boson [arXiv:2301.10731]

Important input parameters for MC simulations

- Higgs boson *mass* measurement with $H \rightarrow 4l$ [arXiv:2207.00320]
- Constrain Higgs boson width with off-shell Higgs boson production [ATLAS-CONF-2022-068]

Higgs self-coupling and HL-LHC prospect:

- Constrain self-coupling from single- and double-Higgs production [arXiv:2211.01216]
- di-Higgs [<u>ATL-PHYS-PUB-2022-053</u>]

• This analysis combines mutually exclusive measurements of Higgs boson production and decay modes

- Signal-strength modifier $\mu_{if} = (\sigma_i / \sigma_i^{\text{SM}}) \times (B_f / B_f^{\text{SM}}) \text{ for a specific}$ production process *i* and decay mode *f*
- Observed global signal strength $\mu = \mu_{if}$:

 $\mu = 1.05 \pm 0.06 = 1.05 \pm 0.03 \text{ (stat.)} \pm 0.03 \text{ (exp.)}$ $\pm 0.04 \text{ (sig. th.)} \pm 0.02 \text{ (bkg. th.)}$

- The κ -framework introduces coupling modifiers for the Higgs coupling with the fermions (κ_f) and bosons (κ_V)
- Coupling measurement with precision 7-12% (5%) for fermions (vector bosons) (κ_c is unconstrained at the moment)

Combined Higgs coupling measurement (III)

- STXS framework partitions Higgs production phase space into several regions to
 - avoid large theory uncertainties
 - provide BSM sensitivity
- STXS measurement can be interpreted with the Effective Field Theory framework, e.g.
 - four-lepton EFT interpretation [Eur. Phys. J. C 80 (2020)]
 - Higgs coupling combination and interpretation [ATLAS-CONF-2020-053]

Combined differential cross-section measurement and interpretation [arXiv:2207.08615]

- Combined $H \rightarrow 4l$ and $H \rightarrow \gamma\gamma$ analysis measures crosssection differentially as functions of various Higgs boson kinematic variables
- Each channel measures cross-sections in defined fiducial volume and extrapolates measurements to the full phase space using acceptance corrections

- <u>Sensitivity on c-quark coupling modifier</u> (κ_c) from p_T^H spectrum is <u>driven by</u> b/c-quark contribution to loop induced ggF and quark-initiated <u>Higgs production</u> modes
- Combining with the constraints from <u>VH(bb)</u> and <u>VH(cc)</u> production - κ_b and κ_c sensitivity through decay - provides the best constraint on κ_c

7

 $\kappa_{\rm h}$

Higgs to invisible combination

- Higgs invisible decay BR would be larger than SM prediction ($H \rightarrow ZZ \rightarrow 4\nu$, ~0.1%), if the Higgs boson can decay to dark matter particles
- 5 production modes are studied separately and in combination
- <u>Run1+2 combination</u> measures BR= 0.04 ± 0.04 ; puts 95% C.L. upper limits at 0.107
- Spin independent elastic scattering cross-section of dark matter and nucleon limits converted from BR limits <u>complement direct dark matter searches</u>
- Several weakly interacting massive particle (WIMP) hypotheses are tested

Higgs boson mass measurement in the $H \rightarrow ZZ^* \rightarrow 4l$ channel

- Mass of the Higgs boson (m_H) is not predicted by theory
- The four-lepton channel allows to perform very precise measurements of the Higgs mass thanks to the fully leptonic final states and with very good resolution.
- Discriminant variables and <u>techniques</u>:
 - m_{4l} : resolution improved by ~17% with a <u>Z-boson mass constraint</u> fit to the leading lepton pairs
 - Signal-background <u>deep neural network</u> (DNN) discriminant: signal events in the training contains samples with different Higgs masses to reduce dependency on m_H ; DNN improves measurement precision by 2%
 - Event-level m_{4l} resolution (σ_i): estimated using a <u>quantile regression neutral network</u> (QRNN); help to extract mass information from events that are not in the "good" detector region; reduces total expected uncertainty by 1%

Jiayi Chen | jiayi.chen@cern.ch

Higgs boson decay width measurement (I)

• Higgs width is predicted to be 4.1 MeV - too small comparing to detector resolution of LHC experiments

• Instead, the ratio of on-shell and off-shell Higgs production probes the Higgs width (unique to $H \rightarrow VV$):

• Analysis considers ggF and electroweak (EW=VBF+VH) production modes and $H^* \rightarrow ZZ \rightarrow 4l/2l2\nu$ final states

- The interference (*I*) between the off-shell signal (*S*) and the $gg/qq \rightarrow ZZ$ continuum background (*B*) is negative
- The size of the deficit in $gg/qq \rightarrow ZZ$ depends on the offshell signal strength ($\mu_{\text{off-shell}}$):

$$N = \mu_{\text{off-shell}} \cdot S + \sqrt{\mu_{\text{off-shell}}} \cdot I + B \quad (I < 0)$$

ggF off-shell signal

ggZZ background

Higgs boson decay width measurement (II)

- $ZZ \rightarrow 4l$ channel uses neural networks trained with kinematic variables and matrix-element discriminants
- $ZZ \rightarrow 2l2\nu$ channel uses the transverse mass of the ZZ system
- The off-shell/on-shell coupling strength ratio, measures the total Higgs boson width of: $\Gamma_H = 4.6^{+2.6}_{-2.5}$ MeV
 - on-shell analysis: [Eur. Phys. J. C 80 (2020)]

Combined single- and double-Higgs to constrain self-coupling [arXiv:2211.01216]

- Expected di-Higgs production cross-section is \sim 1000 times smaller than single-Higgs production
- Higgs self-coupling (coupling modifier κ_{λ}) can be probed not only directly via di-Higgs production but also indirectly via **NLO EW corrections on single-Higgs** (taken from combined Higgs coupling measurement)
- Tight constraint on κ_t mainly comes from single-Higgs analysis

 K_{λ}

Higgs prospect at the HL-LHC

- Two main strategies for ATLAS projections:
 - Extrapolation based on Run-2 results
 - Benefit from well-studied systematics models developed for Run-2 analyses
 - Parametric simulations based on detailed simulations of the upgraded detectors under HL-LHC conditions

Prospect - di-Higgs (I)

- Expected significance is at 3.4σ assuming SM self-coupling strength and a scaled-down systematic uncertainty (baseline scenario)
- Cross-section limits (assuming no di-Higgs production) extrapolated from Run-2 analysis on the di-Higgs production cross section "touches" theoretical prediction

• Expected self-coupling modifier 95% C.L. constraint:

• Single- and di-Higgs current combination: [-1.9, 7.6] vs HL-LHC projection: [0.0, 2.5]

Run2: [arXiv:2211.01216]

HL-LHC projection [ATL-PHYS-PUB-2022-053]

- The ATLAS Higgs group is examining the particle from many distinct perspectives
 - Precise measurements on Higgs cross-sections in both individual production/decay channels as well as their combinations help to probe anomalous couplings induced by BSM physics (e.g. κ -framework)
 - Novel techniques in the Higgs measurement, such as machine learning, achieve resolution beyond pure detector sensitivity
- More Run-2 results are to appear soon; early Run-3 analyses are launching
- Data to be collected during HL-LHC has prospective potential to make new observations, including di-Higgs at a statistical evidence 3σ , projected from Run-2 analysis strategy, upgraded detectors with state-of-the-art technologies, and improved systematic uncertainties
- Finally, a combination with CMS results foresees a significance at 5σ level [CERN Yellow Report]

- The ATLAS Higgs group is examining the particle from many distinct perspectives
 - Precise measurements on Higgs cross-sections in both individual production/decay channels as well as their combinations help to probe *anomalous couplings* induced by BSM physics (e.g. κ -framework)
 - Novel techniques in the Higgs measurement, such as machine learning, achieve resolution beyond pure detector sensitivity
- More Run-2 results are to appear soon; early Run-3 analyses are launching
- Data to be collected during HL-LHC has prospective potential to make new observations, including di-Higgs at a statistical evidence 3σ , projected from Run-2 analysis strategy, upgraded detectors with state-of-the-art technologies, and improved systematic uncertainties
- Finally, a combination with CMS results foresees a significance at 5σ level [CERN Yellow Report]

- The ATLAS Higgs group is examining the particle from many distinct perspectives
 - Precise measurements on Higgs cross-sections in both individual production/decay channels as well as their combinations help to probe *anomalous couplings* induced by BSM physics (e.g. κ -framework)
 - Novel techniques in the Higgs measurement, such as machine learning, achieve resolution beyond pure detector sensitivity
- More Run-2 results are to appear soon; early Run-3 analyses are launching
- Data to be collected during HL-LHC has prospective potential to make new observations, including di-Higgs at a statistical evidence 3σ , projected from Run-2 analysis strategy, upgraded detectors with state-of-the-art technologies, and improved systematic uncertainties
- Finally, a combination with CMS results foresees a significance at 5σ level [CERN Yellow Report]

Backup

Combined Higgs coupling measurement

- ggF and VBF: precision at 7% and 12%
- Productions (significance) that were not observed in Run1:
 - •*WH* (5.8*σ*); *ZH* (5.0*σ*)
 - *ttH* and *tH* (6.4 σ)
- Separating *ttH* and *tH* leads to *tH* upper limit at 15 times the SM value

- $\gamma\gamma$, *ZZ*, *WW*, $\tau\tau$: precision at 10-12%
- Decay (significance) that were not observed in Run1:
 - bb (7.0σ)
 - $Z\gamma(2.3\sigma); \mu\mu(2.0\sigma)$

*When measuring **production** signal strengths, **decays** are assumed SM-like and vice-versa

Combined Higgs coupling measurement interpretation

• [ATLAS-CONF-2020-053]

2

10

• Acceptance correction

• 2-dimensional differential cross-section measurement

Combined differential cross-section measurement and interpretation [arXiv:2207.08615]

- Combine this indirect constraint from pTH spectrum with the direct constraints from VH(bb) and VH(cc) production sensitive to κ_b and κ_c through the decay
- Higgs width parametrized with $B_{\rm BSM}$ branching ratio to BSM particles

The signal probability density function is modelled as

 $\begin{aligned} \mathcal{P}(m_{4\ell}, D_{NN}, \sigma_i | m_H) &= \mathcal{P}(m_{4\ell} | D_{NN}, \sigma_i, m_H) \cdot \mathcal{P}(D_{NN} | \sigma_i, m_H) \cdot \mathcal{P}(\sigma_i | m_H) \\ &\simeq \mathcal{P}(m_{4\ell} | D_{NN}, \sigma_i, m_H) \cdot \mathcal{P}(D_{NN} | m_H), \end{aligned}$

- CERN Yellow Report from European Strategy for Particle Physics (2019):
- Snowmass White Paper (2022)
- Two main strategies for ATLAS projections:
 - Extrapolation based on Run-2 results
 - Benefit from well-studied systematics models developed for Run-2 analyses
 - Parametric simulations based on detailed simulations of the upgraded detectors under HL-LHC conditions

• Higgs boson mass measurement projections based on the Run-1 $H \rightarrow ZZ^* \rightarrow 4l$ results

	Δ_{tot} (MeV)	Δ_{stat} (MeV)	Δ_{syst} (MeV)
Current Detector	52	39	35
μ momentum resolution improvement by 30% or similar	47	30	37
μ momentum resolution/scale improvement of 30% / 50%	38	30	24
μ momentum resolution/scale improvement 30% / 80%	33	30	14

Combined single- and double-Higgs to constrain self-coupling [arXiv:2211.01216]

• Expected di-Higgs production cross-section is \sim 1000 times smaller than single-Higgs production

- Higgs self-coupling (coupling modifier κ_{λ}) can be probed not only directly via di-Higgs production but also indirectly via **NLO EW corrections on single-Higgs** (taken from combined Higgs coupling measurement)
- κ_{λ} constraint driven by di-Higgs channel (marginal contribution from single-Higgs ~5%)

• Expected significance is at 3.4σ assume SM self-coupling strength

*Baseline scenario: HL-LHC with systematic uncertainties scaled down • HL-LHC prospect single-Higgs results are extrapolated from the Run-2 dataset

