

Realizing The Vision: Science Technologies

LISHEP 2023 March 8, 2023 Rio de Janeiro

Marcel Demarteau demarteau@ornl.gov

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

Disclaimer and Acknowledgement

- This presentation is facility agnostic and is just my personal view.
- All mistakes are mine.

• A big thank you to all my colleagues for contributing slides, either directly or indirectly.

Our Vision

Deliver scientific discoveries and technical breakthroughs to answer the most fundamental questions in physics (while building a better and safer world.)

Science Technologies are foundational to ensure successful realization of the vision

Science progresses by experimentation, observation, and theory

Nobody would have predicted …

. that slight irregularities in black body radiation would have led to the entirely new concept of the quantum world;

- \bullet that pondering the constancy of the speed of light would have led to $E=mc^2$;
- \bullet that special relativity and quantum mechanics would have led to anti-matter; $(i\gamma^{\mu}\partial_{\mu} - m)\psi = 0$
- **•** that Noether's theorem would lead to the importance of symmetries and the corresponding conservation laws;

Science progresses by experimentation, observation, and theory

- \bullet that measurement of the persistent, mysterious noise in a radio receiver, not coming from the earth, sun, or our galaxy, would be a confirmation of the big bang theory (1964);
- \bullet that electron-nucleon scattering would lead to the discovery of quarks (1969);
- \bullet that non-Abelian local gauge theories would provide for the basis of the theory of fundamental interactions as we know it (1954 ff.);
- **.** that measurements of supernovae would lead to the concept of dark energy (1998);
- **•** that the "invisible" neutrino (1930) has mass (2002);

Bell Labs Horn antenna

Today: The Edifice of the Standard Models

Particle Standard Model

Today: The Edifice of the Standard Models

Our World Today

- **Amazing understanding of the universe at vastly** different scales
	- **From Inflation to Cosmic Microwave Background** radiation to creation of elements to galaxy formation
	- From the building blocks of matter and their interactions and the generation of mass
- **•** Encapsulated in:
	- **Standard Model of Particle Physics**
	- **.** Standard Model of Cosmology
- \bullet The theories are highly predictive and have been rigorously tested (in QED to 1 part in 10 billion)

• This has been a monumental achievement of the field!

Incomplete

- \bullet What is the mass of the neutrino?
- \bullet What is the nature of the neutrino?
- What is the nature of Dark Matter?
- \bullet What drove inflation?
- **•** What is Dark Energy?
- **.** Is the Higgs fundamental?
- \bullet What is the role of scalars?

Incomplete, Resolved by Experiment

Incomplete, Resolved by Experiment

Theories

Experiment (with highest sensitivity and novel techniques)

Science Technologies Will Play a Pivotal Role

LOAK RIDGE
National Laboratory 12

Science Technologies Will Play a Pivotal Role

Directed Research: driven by the community driven strategy documents

Multi-Dimensional Solid State Tracking Detectors

Transparency in Tracking

- Critical requirements:
	- High spatial resolution
	- Low mass budget
	- No active cooling
	- Low power
	- Hermetic with redundancy

Two Pixel Technologies

Hybrid Pixels Depleted CMOS MAPS

• Not radiation hard

• Flexible integration

• Commercial process

- Workhorse of the field
- Radiation hard
- Flexible (ASIC and sensor separate, 3D sensors)
- ***CAK RIDGE** Costly

E

17

MAPS = Monolithic Active Pixel Sensor

CMOS Trackers

- CMOS monolithic active pixel trackers have gained **enormous momentum** over the last years and hold great promise for the future.
	- Commercial processes offer high volume and large wafers (cost effective)
	- CMOS sensors can be thinned to achieve ultimate low mass trackers <1%
	- Small pixel sizes (~20 µm), low power
	- No cost (and complexity) of bump-bonding.
	- Highly integrated modules using industrial postprocessing tools.
- ALICE Inner Tracker, first CMOS tracker at LHC
	- $-$ 7 layers (R = 21-400 mm), \sim 10 m², 12.5 Gpixels
	- $-$ 0.35% X_0 /layer (Inner)
	-

– Pixel size: 26.88 x 29.24 µm2 ALICE Inner Tracker for LHC Run 3

18

CMOS Trackers

- CMOS monolithic active pixel trackers have gained **enormous momentum** over the last years and hold great promise for the future.
	- Commercial processes offer high volume and large wafers (cost effective)
	- CMOS sensors can be thinned to achieve ultimate low mass trackers <1%
	- Small pixel sizes (~20 µm), low power
	- No cost (and complexity) of bump-bonding.
	- Highly integrated modules using industrial postprocessing tools.
- ALICE Inner Tracker, first CMOS tracker at LHC
	- $-$ 7 layers (R = 21-400 mm), \sim 10 m², 12.5 Gpixels
	- $-$ 0.35% X_0 /layer (Inner)
	- Pixel size: $26.88 \times 29.24 \ \mu m^2$

ALICE Inner Tracker System 2

https://home.cern/news/news/experiments/alice-journey-cosmopolitan-detector

19

Next Generation CMOS Trackers

- Mu3e:
	- Ultra-thin, 50 µm, wafer-scale HV-CMOS Monolithic Active Pixel Sensor.
	- 180 nm technology, chip size 20.6 x 23.2 mm²; pixel size 80x80 µm²
	- $-$ **0.5 %.** X_0 per layer, <30 μ m resolution
- ALICE ITS-3:
	- Ultra-thin (20 µm to 40 µm), wafer-scale **HV-CMOS** Monolithic Active Pixel Sensor.
	- 65 nm technology, chip size 280 x 94 mm2, stitched,
	- $-$ 0.5 ‰ X_0 per layer, <5 µm resolution
	- **Flexible!** Bent around beampipe.

Adding Another Dimension

• Through inclusion of internal gain, obtain hit timing information

Low-Gain Avalanche Diode **(LGAD)**:

- Silicon-based, with moderately doped p-implant gain layer (~ x20)
- $E \sim 10 \text{ V}/\mu\text{m}$
- To achieve spatial resolution, **segmentation** is introduced, which affects the efficiency of the detectors due to gap in the gain layers
- Excellent timing resolution $\sigma(t) \sim 40$ ps

21

Implemented in the Endcap Timing Layer of CMS for the HL-LHC; 39,000 sensors, 14 m2, 8.5 106 channels

Adding Another Dimension with New Ideas

• Through inclusion of internal gain, obtain hit timing information

Being considered for the Electron Ion Collider at Brookhaven.

AC-Coupled devices:

- Implement a **continuous gain** layer over a large area and use capacitive coupling to pickup the signal from the sensors
- No segmentation of the gain layer leads to better efficiency and uniformity
- Enables the fabrication of devices with **small pixels**

Bonding through Anisotropic Conductive Film:

Timepix3-ACF-sensor assembly cross-section

Used in your laptop and cellphone

Gaseous Detectors

• Extensively used given they can be built in large areas at modest cost

- Relatively old, but flexible technology
- Very cost effective for large areas
- Design tailored to application (rate, ion backflow, energy and spatial resolution)

https://indico.cern.ch/event/1233427/

LOAK RIDGE
National Laboratory

- Hadron Blind Detector
	- Photocathode (CsI) deposited on first GEM layer
	- Operated in reverse bias
	- Detect photons from Cherenkov radiation; topological information provides more discrimination (https://www.phenix.bnl.gov/detectors/hbd.html)

- Hadron Blind Detector
	- Photocathode (CsI) deposited on first GEM layer
	- Operated in reverse bias
	- Detect photons from Cherenkov radiation; topological information provides more discrimination (https://www.phenix.bnl.gov/detectors/hbd.html)
- Cylindrical Geometries: CLAS12 at JLAB
	- $-$ 1st curved resistive bulk-Micromegas, 4 m²
	- $-$ 1st use in 5T field
	- $-$ High rate: \sim 30 MHz
	- 2 6 cylindrical layers

Vacuum Detector

- Photo Multiplier Tube (PMT) with dynode gain structure
	- o Modest resolution
- •Micro-Channel Plate PMT
	- o Excellent timing resolution
- •Hybrid Tube
	- o Application specific

DES and DESI

DES and DESI

Particle Identification

- Exclusive measurements with full particle identification provides more complete picture of the process under study
	- Detection of Internally Reflected Cherenkov (DIRC) light
	- Time Of internally Reflected CHerenkov (TORCH) light
	- Different opening angle for the same momentum gives different propagation length, thus time.
- Requires excellent timing resolution: ~45ps
- MCP-based detectors

National Laboratory

Energy Measurement

Crystal Ball Experiment (SLAC)

- Charmonium spectroscopy with crystal calorimeter for electromagnetic showers.
- Superior energy resolution.
- Total absorption crystal calorimetry provides best energy resolution; expensive and only used for EM calorimeters.

Energy Measurement

UA2 (CERN)

- Identification of hadronic decay of W- and Z-bosons into jets.
- Jet energy resolution limited for multiple reasons.
- Total absorption crystal calorimetry no sampling – with multi-dimensional shower identification could provide much better energy resolution; characterize every particle.

Energy Measurement

• Quest for superior hadronic energy resolution

Multi-Dimensional Calorimetry

- Ultimate goal is to use all the information from a showering particle in an engineered medium to extract the most information in combination with other detectors.
- **Imaging calorimetry (Particle Flow)**
	- Charged particles measured in tracker
	- γ : by EM Calorimeter
	- Neutral hadron: by EM and Hadron Calorimeter

Multi-Dimensional Calorimetry

- Ultimate goal is to use all the information from a showering particle in an engineered medium to extract the most information in combination with other detectors.
- **Imaging calorimetry (Particle Flow)**
	- Charged particles measured in tracker
	- γ : by EM Calorimeter
	- Neutral hadron: by EM and Hadron Calorimeter
- **5D calorimetry (x,y,z,E,t):** CMS High-Granularity Calorimeter
	- $-$ ~640m² of silicon sensors, ~370m² of scintillators
	- 6.1M Si channels, 0.5 or 1.1 cm2 cell size
	- 240k scintillator tile channels
	- Data readout from all layers
	-

38

Multi-Dimensional Calorimetry

- **Total absorption calorimetry (homogenous)**
	- Fully contained shower in scintillating medium;
	- No sampling fluctuations.
- **6D calorimetry (x,y,z, \, Q,t):**

39

MOAK RIDGE **National Laboratory**

Use correlation to limit resulting resolution to local width of scatter plot

Corrected Response

A Sense of Scale: 100 TeV

A Sense of Scale: 100 TeV

- Challenges
	- Embedded readout electronics at 1mW/channel = 1.5MW of power
	- Timing on a system scale of millions of channels at the level of 50ps
	- Pile-up reaching 1000 events
- Simply scaling CMS High-Grained calorimeter would require >5,000 m² of silicon

Tracking And B-Field

- Momentum Resolution:
- Challenge:
	- A factor 7 in energy from $14 \text{ TeV} \rightarrow 100 \text{ TeV}$, requires a gain of a factor 7 in σ /BL² to retain LHC p_T resolution, down to $|\eta|$ <6!
		- B=4T \rightarrow B=6T $\sigma = 20 \mu m \rightarrow 5 \mu m$
		- $L=1.1m \rightarrow 2.4m$

Tracking And B-Field

- Momentum Resolution:
- Challenge:
	- A factor 7 in energy from $14 \text{ TeV} \rightarrow 100 \text{ TeV}$, requires a gain of a factor $\frac{7}{10}$ or $\frac{1}{2}$ to retain LHC p_T resolution, down to $|\eta|$ <6!
		- B=4T \rightarrow B=6T σ =20µm \rightarrow 5µm
		- L=1.1m \rightarrow 2.4m

Magnet: 6T / 12m bore System: 30-50 m long Stored Energy: 50-60 GJ.

MOAK RIDGE National Laboratory

Trigger and Data Rates

At 100 TeV

Larger detectors Higher granularity More data

- **•** Tracking and calorimeter each have raw data rates of ~2,000 TB/s
- **Journ 10 Gb/s modularity,** 4M optical links
- **Implies an event-building network of** 50Pb/s capacity
- **.** Note: largest Google data center is currently ~1Eb/s

At 100 TeV

Larger detectors Higher granularity More data

- **Tracking and calorimeter each have** raw data rates of \sim 2,000 TB/s
- **ID** Using 10 Gb/s modularity, 4M optical links
- **Implies an event-building network of** 50Pb/s capacity
- Note: largest Google data center is currently ~1Eb/s

- **•** Power budget for links, based on best current devices (~500mW for 10 Gb/s): 2MW for links alone
- **•** Substantial R&D required for lowmass, rad-hard, low cost devices with no commercial applications

Science Technologies Will Play a Pivotal Role

LOAK RIDGE
National Laboratory

47

rsos.royalsocietypublishing.orgrsos.royalsocietypublishing.org R. Soc. open sci. 5: 180387 R. Soc. open sci. 5: 180387

Crystal Calorimetry

• Traditionally, crystal – fully absorbing – calorimetry has obtained the best energy resolution

• Huge range of possibilities through **quantum engineering** of materials

Crystal Calorimetry

• Traditionally, crystal – fully absorbing – calorimetry has obtained the best energy resolution

• Huge range of possibilities through **quantum engineering** of materials

X OAK RIDGE

Creation of Scintillators with Light

- Light-based **3D Stereolithography** (SLA):
	- Part is produced layer-by-layer from a liquid resin vat using just light
	- Near contactless manufacturing! Background free!
	- Significantly better optical properties than Fused Deposition Modeling
- Photocurable resins allows using UV or visible light:
	- Curing time from seconds to hours; large-scale production
	- Can be performed at room temperature
	- Resin formulations allows for embedding
- Can build **Optically Active** structural materials:
	- Polyethylene naphthalate (PEN) shifts 128 nm LAr scintillation light to ~440 nm and scintillates
	- Yield strength higher than copper at cryogenic temperatures

Low mass detector holder design under UV illumination (LEGEND)

Digression

A closer look at technologies at industrial scale like Organic Light Emitting Diode (OLED)

- A series of organic thin films inkjet printed between two conductors emitting light when a voltage is applied.
- **.** Ubiquitous used in laptops, monitors, automotive, cell phones,

…

Anisotropic Conductive Film drives the pixels.

Spectroscopic photosensors

- Reverse the OLED design: spectroscopic photodetectors
	- Engineer organic materials that absorb the light with a specific wavelength
	- Transparent electrodes collect the signal
	- Cherenkov vs. scintillation separation
	- No loss of photosensor coverage
- Can be made on rigid and flexible substrates
- Organic semiconductors good starting point
	- Low cost & highly scalable
- Integrate with 3D printed scintillators
- Requires multi-disciplinary collaboration

https://www.nature.com/articles/s41598-018-27976-z

https://www.sammobile.com/news/samsungs-new-foldable-and-udcpanels-reveal-an-exciting-future/

Photodetection in Liquid Argon

- Photodetection in DUNE with an Arapuca:
	- trap wavelength-shift light (X-Arapuca uses total internal reflection)
	- Readout with SiPMs
- Coverage, on cathode side and two long membranes: ~14%.
- Total PDE of $(1.8 + -$ 0.1)% with improved scintillator material.
- Room for improvement ...

A.A. Machado, et al., JINST 11 (2016) 02, C02004

Powering

- Photodetection system distributed over the cathode plane, held at 300kV.
- Needs to be electrical isolated:
	- Power over Fiber (PoF)
	- Signal over Fiber (SoF)

- A Low-dropout (LDO) regulator provides stable voltage for front-end electronics bias
	- Low Voltage High Current
- A DC-DC converter provides higher voltage for the SiPM bias
	- High Voltage Low Current
- Performance over fiber nearly as good as over copper

- The mass range for dark matter is in principle unconstrained
- Weakly Interacting Massive Particles were a favorite model

58

Field-like Particle-like

• The ability to engineer quantum systems to improve on the measurement sensitivity holds great promise

Science Technologies Will Play a Pivotal Role

X OAK RIDGE 61

Light Dark Matter in Silicon

- Dark matter interaction in charge-coupled device (CCD)
	- First application: nuclear recoil on Si (DAMIC)

Light Dark Matter in Silicon

- Dark matter interaction in charge-coupled device (CCD)
	- First application: nuclear recoil on Si (DAMIC)
- Revival of an old idea, the 'Skipper CCD', reading the charge in each pixel multiple times
	- Idea proposed in 1990 by Janesick et al. (doi:10.1117/12.19452)
	- Pixel value = $\frac{1}{N} \sum_{i=1}^{N} Q_i$
	- Energy threshold is bandgap (1.1eV)
	- Readout noise 0.1 e-
- OSCURA: 10kg detector
- Background control will be the main challenge

The Oscura Experiment arXiv: 2202.10518 Chavarria (arXiv:2210.05661)

14 Decisional Laboratory

Lowering the bandgap

- Engineering novel single crystal semiconductors with bandgaps of O(1-100 meV)
- Single crystal synthesis allows for scalable substrates
- Materials have anisotropic band structures to give sensitivity to daily DM modulation effects (Eu₅In₂Sb₆)
- Charge readout scheme with O(1) electron resolution that is device independent.

Superconducting Nanowire Single Photon Detector (SNSPD)

- 1. Bias $1 < I_c$
- 2. Singe γ absorption
- 3. Hotspot generation
- 4. High current density, resistive barrier
- 5. Dissipation restoration
- High Efficiency, 98% @ 1550nm
	- *Reddy et al., Optica (2018)*
- UV mid-IR operation
- Superb timing resolution, 2.6 ps FWHM
	- *Korzh et al., Nature Photonics (2020)*
- Low dark counts, 10⁻⁵ cps
	- *Chiles et al, Phys. Rev. Lett. (2022)*
- High even rate, 1.2 Gcps in 63-element
	- *M. Shaw, doi.org/10.1117/12.2563483 (2020)*

Superconducting Nanowire Single Photon Detector (SNSPD)

-
- 1. Bias I < I_c
2. Singe γ a Singe γ absorption
- 3. Hotspot generation
- 4. High current density, resistive barrier
- 5. Dissipation restoration

GaAs bandgap 1.52 eV

Superconducting Nanowire Single Photon Detector (SNSPD)

GaAs bandgap 1.52 eV

Phonon Detection

- For dark matter masses < 100 MeV, dark matter scatters coherently with the entire crystal, producing a single phonon.
- Vibrational energy scale in crystals is O(100 meV)
- The kinematics of optical phonon production all of the kinetic energy of the DM can potentially be used for phonon creation

(Si)

Athermal Phonon Collection Fins (AI)

TES and Fin-Overlap Regions (W)

Resonance Techniques

• A common search technique is using resonant cavities through the Primakov effect

• Tuning resonant frequencies and integration times are limiting factors in their ultimate reach.

A Tunable Plasma Haloscope

M. Lawson et al., PRL 123 (2019) 141802

- A wire array of metamaterials exhibits plasmonic behavior, and can act as a resonator for a dark matter axion experiment:
	- Enables going to higher frequencies
	- Faster scanning times, no tuning difficulties

$$
\omega_p^2 = \frac{n_e e^2}{m_{\text{eff}}} = \frac{2pi}{a^2 \log(a/r)}
$$

Nanophotonics

- Arrays of sub-wavelength spaced nanostructures that can manipulate light wavefronts
- Control of phase, amplitude, polarization, wavelength, diffraction, …
- Large-areas through standard photo-lithographic process
- Low cost and very versatile

M. Khorasaninejad, F. Capasso, Science 358 6367 (2017) DOI: 10.1126/science.aam8100

Nanophotonics

- Improved detection efficiency, timing resolution.
- Possibility for wavelength sensitivity?

Gravitational Quantum Probe

- Gravitational coupling is the only guaranteed interaction channel for Dark Matter!
- Use Micro-electromechanical System (MEMS) technology
	- Bulk Silicon 70 mg accelerometer with soft tethers
	- Readout with dual squeezed light source

73

Gravitational Quantum Probe

Backaction evasion techniques

Fundamental Constants and Quantum Sensors

• Clocks (atomic, nuclear, molecular, highly charged ions) measure with extreme precision atomic and molecular spectra

$$
\begin{array}{|c|c|}\n\hline\n\mathbf{C} & = & \frac{1}{4\pi\varepsilon_0} \frac{e^2}{\hbar c} \\
\hline\n\end{array}
$$

- Ionic, atomic and molecular systems hold great promise:
	- Fundamental physics laws
	- Searches for BSM Physics
	- Fundamental physics constants

Rev. Mod. Phys. 90, 025008 (2018)

Precision Experiments

• Future colliders have direct discovery potential but are not the only source to explore very high energy scales.

Squeezed Precision Experiments

• Nascent Quantum techniques provide a compelling reason

LOAK RIDGE
National Laboratory

77

```
Y. Nakai, M. Reece: Physics Today, Nov. 2018 
DOI:10.1063/PT.6.3.20181114a
```
Science Technologies Will Play a Pivotal Role

R&D That Inspires: Advancing Cryo-Electron Microscopy

- The quest for obtaining the best image resolution of biological material avoiding sample damage and destruction by the electron beam
- Enter the development of the pixel chips for the LHC experiments and their evolution into the Medipix and Timepix families

Noiseless direct detection of electrons in Medipix2 for electron microscopy, *NIM* A546 (2005) 160–163 Direct electron detection methods in electron microscopy, *NIM A*513 (2003) 317-321

R&D That Inspires: Advancing Cryo-Electron Microscopy

- The quest for obtaining the best image resolution of biological material avoiding sample damage and destruction by the electron beam
- Enter the development of the pixel chips for the LHC experiments and their evolution into the Medipix and Timepix families

Ultramicroscopy, **107** (2007) 401-413

Noiseless direct detection of electrons in Medipix2 for electron microscopy, *NIM* A546 (2005) 160–163 Direct electron detection methods in electron microscopy, *NIM A*513 (2003) 317-321

2017 Nobel Prize in Chemistry

Jacques Dubochet University of Lausanne

Joachim Frank Columbia University

Richard Henderson MRC Lab, Cambridge

"For developing cryo-electron microscopy for the high-resolution structure determination of biomolecules in solution".

Nature volume 588, pg. 498 (2020)

X OAK RIDGE

82

Currently use CMOS technology; Medipix helped advance the technology

Closing Thoughts

- \bullet We arguably live in one of the most exciting times for fundamental physics; we have come so, so far but some of the most fundamental questions remain unanswered.
- We very much live in a data driven world
- \bullet Technology is taking a very prominent role:
	- Basic Research Need workshop in the US
	- ECFA detector and accelerator roadmap

or HEP Detector Research and Develor December 11-14, 2019

Our program can only be realized – in a cost-effective manner – by investing in innovative technologies, and get to physics earlier!

Closing Thoughts

Who Celebrates its 16th Birthday in a few months?

https://www.pottermore.com/writing-by-jk-rowling/pensieve

Perspective

September 2005 First iPOD Nano

February 2006 First MacBook Pro **June 2007 First iPhone**

To Realize Our Vision

To Realize Our Vision

To Realize Our Vision

