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➢ There could be a staged development, with a 3 TeV first phase and a  

10 TeV later. Several components could be re-used.

➢ Collider Rings: 3 TeV ~ 4.5 km circumference

10 TeV ~ 10 km circumference

High Energy Muon Collider

Sokratis Trifinopoulos

➢ A Muon Collider 

(MuC) collaboration 

has been created at 

CERN.

➢ EU Design Study for 

a MuC has been 

approved.

[Snomass reports]

2203.08033, 2203.07224, 

2203.07256, 2203.07261



2/36

➢ Starting now, a 3 TeV MuC could start physics in ~2045.

➢ A MuC could run in parallel with an e+e- Higgs factory (FCC-ee, ILC)

Timelines

Sokratis Trifinopoulos

MuC R&D: Lots of progress on all fronts, no show-stoppers so far

MuC Demonstrator?
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➢ Muon colliders combine the advantages of both proton-proton (discovery) and 

electron-positron colliders (precision):

❑ high energy reach (not limited by synchrotron radiation) 

❑ high precision measurements (low QCD background & clean initial state)

❑ Luminosity / Beam power increases with energy.

❑ all beam energy available in μ+μ- collisions.

Why Muon Colliders?

Sokratis Trifinopoulos

[David Shulte, CGI talk

https://youtu.be/17JoTcuIs6k]

See also 

talk from S. 

R. Dasu
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➢ At zeroth order in perturbation theory the muon carries all the momentum 

of the beam.

➢ At high energies, collinear radiation emitted by splitting of the initial state 

must be taken into account. 

➢ For example, well above the NP scale 𝑚𝑋, we expect the VBF to become 

an important production channel:

The MuC overqualifies as a Higgs factory!

The muon collider is a weak boson collider!

Sokratis Trifinopoulos

The muon beam includes all other SM particles (including quarks and gluons)!!

[The Muon 

Smasher’s Guide]

2103.14043
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➢ The initial muon state can be treated in the same way as a proton, using 

generalized parton distribution functions (PDFs) 𝑓𝐴(𝑥, 𝑄)

➢ Strongly-ordered multiple splittings can be resummed, obtaining DGLAP 

evolution for PDFs of a lepton (which can be solved perturbatively!)

Sokratis Trifinopoulos 

Muon PDFs and DGLAP equations

[Han et al]

2007.14300, 

2103.09844

virtual corrections

splitting functions
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➢At LO the boundary conditions are 𝑓𝜇 𝑥,𝑚𝜇 = 𝛿 1 − 𝑥 , 𝑓𝑖≠𝜇 𝑥,𝑚𝜇 = 0.

Sokratis Trifinopoulos 

Evolution below the EW scale

➢ Solving the DGLAP equations accounts for 

resummation of the Leading Logs (LL):

The procedure is necessary for collinear QCD.

➢Numerical procedure:

1. Discretization in a grid of size 𝑁𝑥 in x.

2. Integrate using the rectangular method.

3. Solve numerically the differential equation 

system using the Runge-Kutta algorithm

4. Impose momentum conservation in each step.

[Fixione]

1909.03886
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PDFs at the EW threshold
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➢ The full unbroken SM interactions must be considered.

➢We work in the mass eigenstates basis and in the Goldstone Equivalent 

Gauge. The same numerical method used below the EW scale is employed.

➢ EWSB modifies the DGLAP equations as follows

➢

i. Massive propagators:

ii. Ultra-collinear splittings:

e.g. for 𝑓𝐿
(1)

→ 𝑊𝐿𝑓𝐿
(2)

:

Sokratis Trifinopoulos 

Evolution above the EW scale

[Chen et al]

1611.00788
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➢ The DGLAP system contains 

42 independent PDFs.

➢ The photon-𝑍𝑇 boson 

interference is described by a 

mixed 𝑍𝑇/𝛾 PDF. Similarly 

for 𝑍𝐿 and 𝐻.

➢We provide the PDFs both 

without and with the top.

Sokratis Trifinopoulos 

PDFs above the EW scale

[Ciafaloni et al]

hep-ph/0505047
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➢Due to the chiral nature of 𝑆𝑈(2)𝐿, PDFs become polarized.

➢ Splitting functions depend on the helicity of the states. E.g. in case of 

𝑊-PDF, coupled to 𝜇𝐿, the PDF or RH 𝑊 goes to zero for 𝑥 → 1 faster 

than LH 𝑊, since 𝑃𝑉+𝑓𝐿(𝑧) = (1 − 𝑧)/𝑧 while 𝑃𝑉−𝑓𝐿(𝑧) = 1/𝑧.

Sokratis Trifinopoulos 

Polarizations

[Bauer et al]

1808.08831
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➢ The Bloch-Nordsieck theorem is violated for non-abelian gauge theories. 

➢ The EW Sudakov double logs arises as a non-cancellation of the IR soft 

divergences (𝑧 → 1) between real emission and virtual corrections in 

isospin flipping transitions (e.g. 𝜇𝐿 ↔ 𝜈𝜇 with 𝑊± emission). For these 

splititngs we introduce the explicit IR cut-off 𝑧max
𝐴𝐵𝐶 𝑄 = 1 − 𝑄EW/𝑄

The virtual corrections are modified accordingly.

➢ The physical effect of these double logs is to restore 𝑆𝑈(2)𝐿 invariance at 

high scales.

Sokratis Trifinopoulos 

EW Sudakov double logs

[Bauer et al]

1703.08562

[Ciafaloni et 

al] hep-

ph/0001142
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➢ The case of collinear photon emission from an electron gives the 

Equivalent Photon Approximation (EPA):

➢ The EPA has been generalized to describe EW gauge bosons in high-

energy collisions, in what is now known as EVA.

➢ Solving the DGLAP equations iteratively at LO we recover the EVA.

➢However, in case of transverse gauge bosons PDFs we notice significant 

discrepancies from the numerical LL result mainly in the transverse gauge 

bosons PDFs. They can be traced back to reasons such as:

× The 𝑉 → 𝑉𝑉 is not incorporated in EVA in LO.

× In EVA the initial state is assumed to be unpolarized.

Sokratis Trifinopoulos 

Effective Vector Boson Approximation (EVA)
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PDFs above the EW scale 

(gauge bosons & scalars)



14/36

➢ The near-term future of particle physics will be charted by precision 

measurements. The long-term future of the field crucially depends on 

the decisions we make today about the next generation of high-energy 

colliders.

➢ The two most prominent options on the table are the FCC-hh and a 

multi-TeV MuC.

➢ In this work, we derive the SM PDFs for lepton colliders. We show that 

the EVA, on which current estimates of cross-sections are based, is not 

always an adequate approximation.

➢ We aim at making our result public in a LHAPDF-type format, which 

should be extended to include helicity. Ultimately, an implementation 

of our results (e.g. in MadGraph) is important for any SM or BSM 

research in the MuC.

Conclusions

Sokratis Trifinopoulos

Note: MuC3 could start ~30 years before FCC-hh!
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Thank you!!!!

Sokratis Trifinopoulos 
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Backup slides

Sokratis Trifinopoulos 

16
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➢ LHC has already provided ground-breaking results: 

✓ completion of the SM spectrum (Higgs boson discovery)

✓ exquisite precise measurements of a huge number of other SM processes

✓ fundamentally challenged our New Physics expectations at the EW scale

HL-LHC

➢We are moving towards the HL-phase and there is still lots of data to collect!

Sokratis Trifinopoulos 

LHC: the past and the future

increased Lumi ×10

[Azatov, Garosi, Greljo, 

Marzocca, Salko, ST]

2205.13552
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Still no direct evidence for NP!
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The search for Terra Incognita

[J. Fuentes-Martin]
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High-energy frontier (ATLAS, CMS & 

future colliders): Direct discovery of NP, but 

the mass gap should not be too large

Sokratis Trifinopoulos 

New Physics Quest: two avenues

Precision frontier (COMET, mu3e, LHCb, 

Belle II,…): Indirect NP evidence in low-

energy probles, breaking of (approximate) SM 

symmetries
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➢ Which future collider would offer best sensitivity reach for tree-level 

heavy NP mediators?

New interactions within reach

Sokratis Trifinopoulos
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FCC timeline

Sokratis Trifinopoulos
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MuC timeline

Sokratis Trifinopoulos
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➢ Key Challenges / Opportunities for progress :

❑ μ+μ- must be cooled and accelerated before most of them decay

❑ Intense and collimated high-energy beam                                                          

of neutrinos induces potential radiation risk.

High Energy Muon Collider (design)

Sokratis Trifinopoulos
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➢ Assumes no emittance growth after source and no technical limitation.

➢ Applies to MAP scheme

MuC Luminosity Scaling

Sokratis Trifinopoulos
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Final cooling in MuC

Sokratis Trifinopoulos
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DGLAP equations below the EW scale
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1. Due to the choice of the QCD scale (𝜇𝑄𝐶𝐷 = 0.5 − 1 GeV):

2. Due to the discretization (𝑁𝑥 = [600,1000]):

Sokratis Trifinopoulos 

Uncertainties
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GEG (hybrid of Coulomb & ligh-cone): 

Sokratis Trifinopoulos 

Ultra-collinear splittings in GEG

[Chen et al]

1611.00788
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➢ The splitting function must be generalised to a splitting matrix. The rate 

is computed by tracing against the matrix of the hard scattering process.

➢ The propagators are diagonal in the mass basis:

Sokratis Trifinopoulos 

Photon – Z mixing

[Ciafaloni et al] hep-ph/0505047, 

hep-ph/0505047

[Chen et al] 1611.00788
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i) Inverted Drell-Yan:                               ii) Di-Muon (Tau):

iii) Mono-lepton plus jet:                          iv) LQ pair production:

Signatures at a muon collider (channels)

Sokratis Trifinopoulos
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➢ Due to the luminosities of the valence partons, if the MNP < 𝑠 below 

the collider energy, the effect is visible both at the shape of the cross-

section (resonance peak or t(u)-channel exchange) as well as the very 

precise measurement in the last invariant mass bin.                             

For MNP > 𝑠, the sensitivity arises from the latter strategy.

Signatures at a muon collider (sensitivity)

Sokratis Trifinopoulos

[Azatov et al]

2205.13552
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We consider models in which the dominant quark coupling is to heavy 

flavours. There are two qualitatively different scenarios:

1) 𝑔𝑠𝑏 ≪ 𝑔𝑏𝑏 ~ 𝑔𝜇𝜇 realized by gauging 𝑈 1 𝐵3−𝐿𝜇:

2) 𝑔𝑠𝑏 ~ 𝑔𝑏𝑏 ≪ 𝑔𝜇𝜇 realized by gauging 𝑈 1 𝐿𝜇−𝐿𝜏 ∶

Z' gauge bosons

Sokratis Trifinopoulos

approximate 𝑈(2)3

quark-phobic (couplings generated via mixing with heavy VLQs)

[Greljo et al]

2107.07518
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Z' gauge bosons (𝑈 1 𝐵3−𝐿𝜇, no mixing)

Sokratis Trifinopoulos
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𝑺𝟑 leptoquark (𝑼(𝟐)𝟑 - symmetric)

Sokratis Trifinopoulos
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Z' gauge bosons (𝑈 1 𝐿𝜇−𝐿𝜏)

Sokratis Trifinopoulos

Quark-phobic scenario:
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𝑼𝟏 leptoquark

Sokratis Trifinopoulos

𝑼(𝟐)𝟑 - symmetric



38/36

Z' gauge bosons (prospects)

Sokratis Trifinopoulos
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Leptoquarks (prospects)

Sokratis Trifinopoulos
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