

CMS: Higgs Results from the LHC Mass, Couplings, Differential σ , CP, Rare Decays, HH, BSM

LHC Run2, Run3 and HL LHC Journey of Discovery

Manaus

Salvador

Harvey B Newman On behalf of the CMS Collaboration LISHEP 2023 UERJ March 6, 2023

LISHEP: Return to Rio

LHC and CMS Excellent Performance

CMS Collected 138/fb for Physics at 13 TeV; 91+% Data Taking Efficiency (to 95%) in 2023 Thanks to: Excellent Performance of the LHC & Efficient Operation of Detector Systems Looking Forward to ~300/fb at 13.6 TeV by the end of Run3

Standard Model Cross Sections 7-13 TeV Agreement: from ~0.08 barn (pp inelastic) to 0.33 femtobarn (EW qqZZ)

Overview of CMS cross section results

Higgs Boson Discovery: An Achievement of Humanity. Now That Lagrangian is Everywhere

- Higgs Boson Discovery Opened a New Window:
 - What Stabilizes the theory
 - What was the physics of the early universe ?
- Are there New Particles (Heavy H, V-prime, graviton, VLQ...)
- Precise EWSB Exploration
 - Is it the "perfect" SM Higgs Boson ?
 - Lorentz structure and Symmetries (CP) of the EW + QCD Lagrangian
- Rarer production + decay modes;
 Kinematics and final state structure
- Milestones: 2nd Gen ff decays, VBS (unitary), HH (self coupling), fiducial and differential σ (STXS)
- BSM Models
- Flavor: LFUV Searches

Higgs Production at the LHC Run 1: 7-8 TeV pp Collisions; Run2 at 13 TeV

See Handbook on LHC Higgs Cross Sections Vol.4: https://arxiv.org/abs/1610.07922v2 (May 2017)

Higgs Boson Decays

ZZ, γγ: High resolution Channels: Precise Mass and Differential Measurements

WW: High BR but Low Resolution

μμ: Very small BR but access to Couplings to 2nd Generation Fermions

bb,ττ: High BR but low S/B. Important results: directly probe couplings to fermions

Higgs Boson Mass

- M_H in the SM is a free parameter: Once known, all Higgs boson couplings to SM particles are fixed
- Most sensitive channels: $H \rightarrow \gamma \gamma \& H \rightarrow ZZ \rightarrow 4l$: fully reconstructed with high resolution
- Statistical power of the two channels similar; systematics is an emerging challenge in $H \rightarrow \gamma \gamma$
- CMS+ATLAS Run1 combination m_H = 125.09 ±0.24 GeV
- CMS $H \rightarrow ZZ \rightarrow 4l$ channel
- JHEP11(2017)047
- *m_H* = 125.26 ±0.20 (stat) ±0.08 (sys) GeV
- CMS: $H \to \gamma \gamma$ PLB 805 (2017) 135425
 - *m_H* = 125.78 ±0.18 (stat) ±0.18 (sys) GeV
- CMS: $H \rightarrow \gamma \gamma \& H \rightarrow ZZ \rightarrow 4l$ Combined Run1 + 2016: Still the most precise
- *m_H* = 125.38 ±0.14 (±0.11 stat. only) GeV
- Run2: Results in 2023; to < 100 MeV precision</p>
- * HL-LHC: Expect ~20 MeV precision CMS PAS FTR-21/007 and 21/008

Decay Coupling Strengths $\mu = \sigma/\sigma_{SM}$ Long Road to the Combination

Nature 607 (2022) 60-68

Recent: H \rightarrow WW Production σ and Couplings

CMS-HIG-20-013 October 2022 Accepted for Eur. Phys.J. C

Steady Improvement of Analysis Techniques

Categories overview: Production, leptons, jets; + p_T ranges

Category	Number of leptons	Number of jets	Subcategorization
ggH	2	_	(DF, SF) \times (0 jets, 1 jet, \geq 2 jets)
VBF	2	≥ 2	(DF, SF)
VH2j	2	≥ 2	(DF, SF)
WHSS	2	≥ 1	$(DF, SF) \times (1 \text{ jet}, 2 \text{ jets})$
WH3ℓ	3	0	SF lepton pair with opposite or same sign
ZH3ℓ	3	≥ 1	(1 jet, 2 jets)
ZH4ℓ	4	—	(DF, SF)

• Main backgrnds: WW, DY; + VV (V = W,Z, γ), tW, $\tau\tau$

- Scalar nature of the Higgs leads to lower m_{ll} relative to WW background
- Also need $m_T^H = m_T (m_{\ell\ell}, p_T^{miss})$ to discriminate against low $m_{\ell\ell}$ events from $\tau\tau$, $V\gamma$
- b-jet veto against top; multiple control regions to normalize the backgrounds
- Final ggH discrimination in the 2D (m_{ll}, m_T^H) plane
 DNN Multiclassifier for VBF vs t, WW, ggH

$H \rightarrow WW$ Results

CMS-HIG-20-013 October 2022 Accepted for Eur. Phys.J. C

138 fb⁻¹(13 TeV)

1.05

CMS

Inputs to the Combination

Nature 607 (2022) 60-68

Coupling Strengths $\mu = \sigma/\sigma_{SM}$

in Production and Decay modes Nature 607 (2022) 60-68

• 5 well established decay modes with > 5σ:

ZZ, $\gamma\gamma$, WW, $\tau\tau$, bb Event Rates compatible with the SM

Challenge:

Experimental statistical uncertainty comparable to systematics and theory

• Overall Signal strength

 μ = 1.002 ±0.036 (stat) ±0.029 (exp) ±0.033 (th)

Main production modes measured: ggF, VBF, WH, ZH, ttH, tH

- Difficult (cc) and rare (μμ, Zγ) decay modes: measurements underway
- Hints of excesses in rare production and decays: to be resolved with Run 3 data

First Evidence (3.0 σ) for H $\rightarrow \mu\mu$ Exclusive categories: ggH, VBF, VH and ttH

Assuming the SM need ~4 Times the Data for a 5σ Observation There is some possibility by the end of Run3

Search for $H \to Z\gamma$, $Z \to \ell^+ \ell^- \ell = (e, \mu)$ CMS PAS HIG-19-014 Accepted by JHEP

• SM: $\mathcal{B}(H \rightarrow Z\gamma) / \mathcal{B}(Z \rightarrow ee/\mu\mu) \sim 10^{-4}$ Loop Induced: Sensitive to BSM physics

- Two prompt leptons with M_{ℓℓ} ~ M_Z
 VBF, VH, ttH categories; +ggH with Dkin(ℓℓγ)
 Simultaneous fit to M(ℓℓγ) in all categories
- Signal Strength μ = σ/σ_{SM} for (pp → H) X ℬ(H → Zγ): μ = 2.4 ± 0.9; Significance 2.7 σ; 95% CL Limit: 4.1 observed (1.8 exp)
 ℬ(H → Zγ) / ℬ(H → γγ) = 1.5 +0.7 -0.6 Compatible with SM ratio 0.69 ± 0.04 at 1.5σ level

Search for H \rightarrow c\bar{c} Full Run 2

efficiency

m

- Probing Higgs boson Couplings to 2nd Generation Quarks
- SM: $\mathscr{B}(H \rightarrow c\overline{c}) = 2.9\%$
- Using VH (H \rightarrow cc) with Z \rightarrow vv, $W \rightarrow \ell v, Z \rightarrow \ell \ell$ (0,1,2 lepton categories)
- Challenging backgrounds:
 - V + Jets (Enormous cross section)
 - VH, $H \rightarrow bb$ (20X the $H \rightarrow c\bar{c}$ rate)
 - Need 3-way discriminator: q/g jet vs c-jet vs b-jet
- pp \rightarrow VZ, Z \rightarrow cc standard candle validates the analysis
- ParticleNet GNN discriminator for $H \rightarrow cc$: PF, secondary vtx, wide jets
 - p_T > 300 GeV separates boosted **Higgs** with merged c-quark jets, from resolved category

CMS HIG-21-008

Search for H \rightarrow c\overline{c} Full Run 2

CMS PAS HIG-21-008 (February 28, 2022)

p_T > 450 Boosted Analysis

CMS PAS HIG-21-012 (November 25, 2022)

H Coupling Modifier Framework: Characterize possible deviations from SM

K Factors for Production and Decay

$$\Gamma_{ZZ}, \Gamma_{WW}, \Gamma_{\tau\tau}, \Gamma_{bb}, \Gamma_{\gamma\gamma}, \Gamma_{gg}, \Gamma_{tt} \text{ and } \Gamma_{TOT}$$

$$N(xx \to H \to yy) \sim \sigma(xx \to H) \cdot B(H \to yy) \sim \frac{\Gamma_{xx}\Gamma_{yy}}{\Gamma_{H}}$$

We cannot extract all the parameters at once with current data.

So we do Coupling Compatibility Tests using scaling factors:
 κ relative to SM and their ratios λ

Example: For the gg \rightarrow H $\rightarrow \gamma\gamma$ process:

σ x BR(gg→H→γγ) / $σ_{SM}$ x BR(gg →H→γγ)_{SM} = $κ_g^2 κ_γ^2 / κ_H^2$

•Assumptions: Single narrow resonance, SM tensor structure;

- No new physics in loops (gg \rightarrow H, H $\rightarrow\gamma\gamma$)
- No BSM decays (invisible, not observed)

LHC Higgs Cross-Section WG 2013: CERN-2013-004 arXiv:1209.0040. arxiv 1310.4828

Fig. 1 | **Feynman diagrams for the leading Higgs boson interactions. a**-**f**, Higgs boson production in ggH (**a**) and VBF (**b**), associated production with a W or Z (V) boson (VH; **c**), associated production with a top or bottom quark pair (ttH or bbH; **d**) and associated production with a single top quark (tH; **e**, **f**). **g**-**j**, Higgs boson decays into heavy vector boson pairs (**g**), fermion–antifermion pairs (**h**) and photon pairs or Zγ (**i**, **j**). **k**-**o**, Higgs boson pair production through ggH (\mathbf{k} , \mathbf{l}) and through VBF (\mathbf{m} , \mathbf{n} , \mathbf{o}). The different Higgs boson interactions are labelled with the coupling modifiers κ , and highlighted in different colours for Higgs–fermion interactions (red), Higgs–gauge-boson interactions (blue) and multiple Higgs boson interactions (green). The distinction between a particle and its antiparticle is dropped.

Full Run2 137/fb

CMS-HIG-22-001

Summary of Higgs Couplings

Higgs Boson Natural Width and Off-Shell Contributions $\sigma^{ m on-shell} \propto rac{g_{ m p}^2 g_{ m d}^2}{\Gamma_{ m o}} \propto \mu_{ m p} \Rightarrow \sigma^{ m off-shell} \propto g_{ m p}^2 g_{ m d}^2 \propto \mu_{ m p} \Gamma_{ m H}$

Measurement ratio of on-shell to off-shell signal strengths for each production mode gives Γ_{μ}

$$\sigma \propto \frac{g_{prod}^2 g_{dec}^2}{\Gamma_{\rm H}} \propto \mu_{prod} \quad \sigma \sim \int \frac{g_{prod}^2 g_{dec}^2}{(m^2 - m_{\rm H}^2)^2} \dots dm^2 \propto \mu_{prod} \cdot \Gamma_{\rm H}$$

- Analysis: Need high-mass ZZ events that contain off-shell H contributions
- Can use both 4 ℓ (high m_{4 ℓ}) and 2 ℓ 2 $_{\rm V}$ (high m_T^{ZZ})
 - Tradeoff: BR ($2\ell 2\nu$) ~ 6 X BR (4ℓ), But 4ℓ is cleaner: about equal statistical power overall
- Need on-shell H(125) events to extract $\Gamma_{\rm H}$: Only 4 ℓ
- Can measure both off-shell μ_F (ggH) and μ_V (VBF, VH)
- Biggest Challenge: Extract off-shell information from the tails, with limited statistics
- Need precise control of both irreducible and reducible backgrounds, and instrumental effects
- Need theory input: NLO EW $qq \rightarrow ZZ$, WZ corrections

Nature Phys. 18 (2022) 1329

On Shell and Off Shell $gg \rightarrow 2\ell 2\nu$

CMS

Higgs Boson Natural Width and Off-Shell Contributions 1st Evidence for H off-shell from 4*l* and 2*l* 2v Nature Phys. 18 (2022) 1329

Simplified Template Cross Sections (STXS)

https://twiki.cern.ch/twiki/bin/view/LHCPhysics/LHCHWGFiducialAndSTXS

- Extract production mode cross sections in exclusive phase space regions (STXS bins)
- Simultaneously maximize the sensitivity of measurements and minimize their theory dependence
- Isolate BSM Effects
- Minimize the number of bins needed without loss of sensitivity
- Significant progress from CMS across many accessible Higgs decays
- In many cases the results are statistics limited: excellent prospects for Run3

$H \rightarrow \gamma \gamma$ and STXS Stage-1.2

CMS-HIG-19-0015 JHEP 07 (2021) 027

Full Run2 137/fb

m_{yy} (GeV)

p_T (GeV)

65

$H \rightarrow \gamma \gamma$ Full Set of STXS Stage 1.2 Bins $\frac{CMS-HIG-19-0015}{JHEP 07 (2021) 027}$

Full Run2 137/fb

Figure 1: Diagram showing the full set of STXS stage-1.2 bins, adapted from Ref. [10], defined for events with $|y_{\rm H}| < 2.5$. The solid boxes represent each STXS stage-1.2 bin. The units of $p_{\rm T}^{\rm H}$, $m_{\rm jj}$, $p_{\rm T}^{\rm Hjj}$, and $p_{\rm T}^{\rm V}$ are in GeV. The shaded regions indicate the STXS bins that are divided at stage 1.2, but are not measured independently in this analysis.

$H\to\gamma\gamma$ Inclusive and differential fiducial cross sections

CMS-HIG-19-0016 Accepted by JHEP

- Fiducial cross sections: Probe event kinematics, multiple topologies to reduce model dependence
- STXS framework targets ggH, VBF, VH, ttH production modes; covers whole kinematic phase space with mutually exclusive regions to detect BSM effects
- MVA Analyses: Photon, diphoton, and photon vertex
- Photon ID MVA: BDT trained on γ+jet events, using kinematics, isolations and shower shape as inputs
 - Corrections on shower shape and isolation variables achieved using quantile morphing method
 - Validated on $Z \rightarrow \mu\mu\gamma$ and $Z \rightarrow ee(\gamma)$ events
- Improves ID output agreement with the data; to ~1% in the barrel; 3% in the endcaps
 - Systematic uncertainty on inclusive fiducial cross section reduced to 1.5%, from previous 5%
- Categorization by diphoton mass resolution σ_m/m; decorrelated wrt m to avoid backgd shape distortions
- Maximum likelihood fit on signal strength per bin includes full unfolding of the detector response matrix

$H \rightarrow \gamma \gamma$ Inclusive and differential fiducial cross sections CMS-HIG-19-0016 Accepted by JHEP

Example Observed Differential Distributions: vs $p_T^{\gamma\gamma}$, n_{jets} , $|y^{\gamma\gamma}|$ and $cos(\theta^*)$

Full Run2 137/fb

32

K. Mazumdar at Higgs 2022 Conference

$H \rightarrow ZZ^* \rightarrow 4\ell$ and STXS

Full Run2 137/fb

Also see Gritsan et al. Phys. Rev. D 94,055023

ttH-leptonic-tagged ttH-hadronic-tagged

ĦΗ

H → bb Differential Measurements

JHEP 12 (2020) 085

Full Run2 137/fb

VBF $H \rightarrow bb$

CMS-PAS-HIG-22-009

Run 2, 91 fb⁻¹ (13 TeV)

Data - QCD

m_{bb} (GeV)

200

CMS

Preliminary

Analysis Summary

• Inclusive 2016+ 2018 measurement

- Main Backgrounds: QCD, Z+jets
- Dedicated "loose" and "tight" triggers for b-tagged jets plus VBF jets
- Large Δη VBF jets reduce QCD background
- **BDTs classify VBF signal**, **Z+bb**, **ggH**, **QCD** into regions
- **Parametric m(jj) distributions** derived from simulation (signal, Z+jets) or sideband data (QCD)
- $Z \rightarrow bb + Jets$ analysis cross check

 $\mu_{Zbb} = 0.94 \pm 0.20$ (stat) ± 0.21 (syst)
H → ττ Differential Measurements Full Run2

<u>CMS HIG-20-015</u> Phys. Rev. Lett. 128, 081805

CMS at LHCP 2021: 1st differential measurement in the $H \rightarrow \tau \tau$ channel

Comparing to other final state measurements (4 ℓ , $\gamma\gamma$, $\tau\tau$) brings significant improvements: exploring the phase space of large jet multiplicities and/or Lorentz-boosted Higgs bosons (to NNLO)

Combined Htt Yukawa CP Structure Studies

- CP Structure of Higgs fermion couplings explored in multiple Higgs-boson final states:
 - $H \rightarrow \tau \tau$, or ttH, tH with $H \rightarrow \tau \tau$
 - ttH, tH with $H \rightarrow \gamma \gamma$ decays
- CP structure in Higgs-boson vector couplings probed in
 - $H \rightarrow ZZ^* \rightarrow 4\ell$ channel
 - New: Multilepton final states in ttH, tH with H→WW, t → Wb
- Results: No significant CP odd contributions observed
- Combined results: Best fit
 |f (Htt)^{CP}| =0.28; < 0.55 at 68% CL</p>
- Compatible with SM
 CP Even: |f (Htt)^{CP}| = 0

Eur. Phys. J. C 82 (2022) 290 **CMS HIG-19-007**

Search for Lepton Flavor Violating Decays in $H \rightarrow \mu \tau$, $e \tau$

Full Run2 ; Direct Search

PRD 104 (2021) 032013

- Arise in many BSM Models: 2HDM, composite H, exotic resonances, extra dimensions, etc.
- Constraints: $\mu \rightarrow e\gamma$ limits $\rightarrow \mathscr{B}(H \rightarrow e\mu) < 10^{-8}$ $\tau \rightarrow e\gamma, \tau \rightarrow \mu\gamma, (g-2)_e, (g-2)_{\mu} \rightarrow \mathscr{B}(H \rightarrow \mu\tau, e\tau) \leq 10\%$
- Search Channels: μτ_h μτ_e, eτ_h, eτ_e
 BF constraints translated to limits on LFV Yukawas Y_{eτ}, Y_{μτ}
- μτ analysis somewhat similar to H → ττ, except muons are prompt, tend to have higher momenta
- 0,1,2 jet, ggF, VBF categories;
- BDTs to separate signals from non-Higgs and H → ττ backgrounds
- Results; 95% CL Upper Limits

 - B(H → eτ) < 0.22% (0.16% expected)
 </p>

Search for Lepton Flavor Violating $H \rightarrow e \mu$ Decays

Full Run2 CMS-HIG-22-002

- Constraints: $\mu \rightarrow e\gamma$ limits $\rightarrow \mathcal{B}(H \rightarrow e\mu) < 10^{-8}$
- Search for LFV OS decay to μe of an SM-like or BSM Higgs with 110 < m_{χ} < 160 GeV
- Signature: m_x or m_H peak on a smooth background: Mainly tt, WW leptonic decays
- Categories: for ggF, VBF production; and S/B bins from BDTs trained to extract the signal

- ℬ(H (125) →eµ) is translated to an upper limit on the LFV Yukawas Y_{eµ}, Y_{µe}
- An excess of events over background observed around 146 GeV:
 Global (local) significance = 2.8σ (3.8σ)

Search for Lepton Flavor Violating $H \rightarrow e \mu$ Decays Full Run2

CMS-HIG-22-002

Observed Global and local p-values versus the hypothesized BSM Higgs mass m_X

Higgs Portal: Wide Ranging Searches for Exotic Resonances

95% CL Limits at 13 TeV (June 2022) Full Run2

CMS

BSM Heavy Resonances: $X \rightarrow VV, VH \rightarrow (jj)(jj)$

Highly Boosted: Two large merged jets (R = 0.8)

CMS B2G-20-009 Submitted to Phys. Lett. B

- Heavy Resonance Examples: X = Graviton (J=2), W'/Z' Triplet (J=1), Radion, Heavy H (J=0)
 Signature:
 - SM bosons (W, Z, H) each decay to qq jet pairs
 - For m_x > 1.3 TeV, expect two wide jets (R=0.8)
 - Relatively narrow resonance: assume $\Gamma_X \ll m_{
 m JJ}$
 - Explore both VBF as well as ggF production
- Deep Learning Taggers; HPHP... LPLP Categories; Final 3D discriminant using (m_{JJ}, m_{J1}, m_{J2})
- Mass Limit Examples:

 $V' \rightarrow VV+VH: m_{V'} > 4.8 \text{ TeV}$ Radion $\rightarrow VV: m_{V'} > 2.7 \text{ TeV}$ Graviton $\rightarrow VV: m_{V'} > 1.4 \text{ TeV}$ In bulk graviton model, exclude: Spin 2 Gravitons with M < 1.4 TeV Spin 0 Radions with M < 2.7 TeV Maximum Excesses observed at 2.1 and 2.9 TeV: Significance: 3.6 σ local, 2.3 σ global

Higgs Boson Self-Coupling: HH Searches

- Higgs self-coupling probes the nature of the Higgs potential: $V(H) = \frac{1}{2}m_H^2 H^2 + \lambda_3 v H^3 + \frac{1}{4}\lambda_4 H^4$ λ_3 : Trilinear Higgs self-coupling
- λ₃ can be probed via HH production: extremely challenging at LHC, accessible at HL-LHC

Main production mode ggF ~31.05 fb @NNLO Destructive Interference in the SM

Sub-leading VBF ~1.73 fb @13 TeV N³LO QCD VBF channel provides access to the HVV (κ_V), triple HHH (κ_λ), and HHVV (κ_{2V}) quartic couplings

Resonant Searches: X →HH Predictedi BSM Extensions: MSSM, other 2HDMs, Extra Singlets, Warped Extra Dimensions, CP-Even Spin 0 or Spin 2

HH Combination

- Production Modes (Tags): ggF, VBF
- Main decay channels are Complementary: $HH \rightarrow bb\gamma\gamma$, bbWW, $bb\tau\tau$, bbbb
 - Tradeoff between BR1*BR2 and relative purity
 - Cover different phase space regions; Most sensitive in different mass ranges
 - ➡ A lot gained by combining

Complementary roles of the dominant ggF and subdominant VBF production modes

Inclusive HH Searches

<u>Nature</u> 607, 60–68 (2022)

Recent Higgs Boson Self-Coupling Results with Full Run2 Data

- New HH decay channels and significantly improved analysis strategies
- Explore VBF production mode and HHVV coupling

- -3.3 < κ_{λ} < 8.5 obs @95% CL
- σ(HH) / σ(HH_{SM}) < 7.7 (5.2) obs(exp) @95% CL
- HH→bbγγ VBF Categories
- σ(HH) / σ(HH_{SM}) < 225 (208) obs(exp) @95% CL

 $HH \rightarrow bbZZ^* \rightarrow bb+4\ell$ (CMS-PAS-HIG-20-004):

- −8.8 < K_{λ} < 13.4 obs @95% CL
- σ(HH) / σ(HH_{SM}) < 32.4 (39.6) obs(exp) @95% CL

95% CL Limit on σ (HH) X $\mathcal{B}(H \rightarrow bbZZ^* \rightarrow bb+4\ell)$

Self- and tH Couplings: HH \rightarrow bb $\gamma\gamma$ + ttH,H \rightarrow $\gamma\gamma$ JHEP 03 (2021) 257

Single Higgs boson production & decay rates, kinematics, are sensitive to Higgs self-coupling through Electroweak Corrections \rightarrow indirectly constrain κ_{λ} , assuming no other BSM effects

Recent Higgs Self- and Quartic Coupling Results with Full Run2 Data

Resolved analysis HH→bbb currently provides the most stringent limit on HH production from an individual decay channel PRL 129, 081802 (2022)

- Targets both ggF and VBF Production
- Dedicated triggers: on 3-4 b-jets
- New analysis: Multivariate with Background estimated from multiple control regions
- DeepFlavour b-tagger
- Largest Uncertainty Sources
 - Total integrated luminosity
 - Jet energy scale & resol'n
 - Trigger efficiency
 - b-tagging selection

<mark>σ(HH)/σ(HH_{SM}) < 3.9 (7.8) obs (exp)</mark> −2.3 < κ_λ < 9.4 obs @95% CL

-0.1 (-0.4) < κ_{2V} < 2.2 (2.5) observed (exp) @95% CL

New: Higgs Boson Self- and Quartic Couplings κ_{λ} , κ_{2V} with Full Run2 Data

Highly Boosted HH \rightarrow bbbb analysis with ParticleNet GNN H \rightarrow bb tagger: Most stringent limit on Quartic HHVV Couplings

CMS-B2G-22-003 Accepted by PRL

- Targets both ggF and VBF
 Production; 30X k_{2V} Sensitivity
- State of the art ParticleNet GNN discriminant D_{bb} selects large radius jets from H → bb rejecting QCD jet and tt pairs
- D_{bb} score → 3 Working points Tight, Medium, Loose:
 Efficiencies 60, 80, 90%
 QCD + tt Backgd 0.3, 1, 2%
- BDT score uses jet p_T & mass, p_T, η kinematics, and D_{bb} → tight, medium and loose WPs with 1, 2, and 12% misID rates
- High, medium and low signal purity categories based on the D_{bb} and BDT scores
- High Purity VBF Category requires 2 tight D_{bb} large jets

http://cms-results.web.cern.ch/cms-results/public-results/publications/B2G-22-003

Conclusions

Time Evolution: From Discovery to HL-LHC Nature 607 60-68

- Measurements of Higgs boson properties agree with SM expectations, hints for new physics could emerge as data taking progresses and analyses advance
 - Major production and decay channels reaching ~10% level precision.
 Improved sensitivity to rare process
 e.g. evidence of H→µµ and H→ℓℓγ
 - Substantial progress in fiducial/differential and STXS measurements, and new machine learning methods: deepening the search
 - Higgs boson coupling CP-structure studied in both Higgs-fermion and Higgs-boson couplings, no sign of CP-mixing so far
- Good progress in HH searches with new channels and improvements in analysis: Upper limit on σ(HH)/σ_{SM} down to 2.5 Prospect of 5σ at HL-LHC
- The search for BSM physics is expanding on many fronts: in the Higgs sector & beyond

The expected LHC + HL LHC dataset is 20X the current dataset

LHC Run3 and Beyond We have launched on an Ocean of Discovery Brazilian Morning

Bright Trospects for the HL LHC

Many More Higgs and Other Physics Results

https://cms-results.web.cern.ch/cms-results/ public-results/publications/ https://cms.cern/tags/physics-briefing

The Higgs 2022 Conference (November 2022): https://indico.cern.ch/event/1086716/timetable/#all.detailed

57th Rencontres de Moriond (March 2023) https://moriond.in2p3.fr/2023/ Ongoing

LISHEP 2018 Salvador, Bahia

Candidate Events

Mass Peaks

The Outlook

KNOT IN THE OF ICHNOLOGY

- * SM or not: the 125 GeV Higgs boson has taken us to the threshold of an era of new physics, with a host of questions ***** Natural, Split or High Scale SUSY ?: ★ A nearby 3rd generation at <~2 TeV ?</p> ★ Another nearby scale at ~5-100 TeV ? * OR: new singlets, doublets, triplets; new in GeV scalars, vectors, composites, extra dim. ?... ★ Vacuum (meta)stability → Another new scale at ~10¹⁰⁻¹² GeV ? ***** Neutrino masses (via seesaws or RH v): A "similar" intermediate scale ? * The Discovery has Expanded our Vision
- Run3+ : a new horizon to explore and test our ideas: on EWSB and beyond

Apologies for all I could not cover

The 125 GeV Higgs Mass Are we just on the wrong side of the Vacuum Stability Bound ?

- For a Higgs mass of ~125 GeV
- $\Rightarrow \lambda$ goes negative \Rightarrow Vacuum we are in is *metastable... ??*
- → OR: New physics at an intermediate energy scale ~10¹⁰⁻¹² GeV
- What lies between us and the Big Bang ?

Event separation

Irene Dutta: $H \rightarrow \mu\mu$ Evidence Talk at La Thuile

Event separation

Events ttH VH (leptonic)

- Train independent BDTs for each region
- Background modelled with discrete likelihood profile of physics inspired and empirical functions.
- Signal peak modelled with a Gaussian function with power-law tails on both sides
- Perform a parametric fit to $M_{\mu\mu}$ spectrum

- Train a deep neural network
- Perform a simulation based template fit to DNN score output

Irene Dutta: $H \rightarrow \mu\mu$ Evidence

Talk at La Thuile

Evidence of $H \rightarrow \mu \mu$

Irene Dutta: $H \rightarrow \mu\mu$ Evidence:Talk at La Thuile

•

Production category	Observed (expected) Signif.	Observed (expected) UL on μ			
VBF	2.40 (1.77)	2.57 (1.22)			
ggH	0.99 (1.56)	1.77 (1.28)			
ttH	1.20 (0.54)	6.48 (4.20)			
VH	2.02 (0.42)	10.8 (5.13)			
Combined $\sqrt{s} = 13 \text{TeV}$	2.95 (2.46)	1.94 (0.82)			
Combined $\sqrt{s} = 7, 8, 13 \text{TeV}$	2.98 (2.48)	1.93 (0.81)			

- For ggH, VH, and ttH channels - interpolate signal shape parameters analytically from m_H = 120, 125, and 130 GeV signal samples.
- For VBF channel, re-evaluate DNN for each mass point with the mass input fixed to that value and perform a new fit
- Observed jitter in VBF due to shuffling of data events in high score DNN bins as mass changes (binned fit).

Prospects for Run3 and Beyond

"There's Plenty of Room at the Bottom" An Invitation to Enter a New Field of Physics (Feynman Lecture at Caltech, December 29, 1959)

There is So Much Room

CMS [Scenario S1; Being Updated Now]

We have only just begun

L (fb ⁻¹)	κγ	ĸ _w	KZ	Kg	, K _b	Kt	K _T	κ _{Ζγ}	κ _μ	BR _{invis}	
300	7%	6%	6%	8%	6 13%	6 15%	6 8%	41%	23%	28%	
3000	5%	5%	4%	5%	6 7%	10%	6 5%	12%	8%	17%	
ATLAS [Scenario S1]											
L (fb ⁻¹)	κγ	ĸw	κ _z	κ _g	κ _b	ĸ	κ	κ _{Ζγ}	κ _μ	BR _{invis}	
300	9%	9%	8%	14%	23%	22%	14%	24%	21%	22%	
3000	5%	5%	4%	9%	12%	11%	10%	14%	8%	14%	
Anc	l If	We	Bo	oth l	lmpi	rove	e [S2	2; 30	000/	fb]	
→ Reduce Theory Systematics by 50%					→ Reduce Exp Syst by √Lumi						
	Κγ	ĸ _w	KZ	к _g	К _b	к _t	K _T	κ _{Ζγ}	κ _μ	BR invis	
ATLAS	5 → 4	5 → 5	4 → 4	9 → 7	12 <mark>→11</mark>	11 → 9	10 <mark>→9</mark>	14 <mark>→1</mark> 4	4 8→7	14 <mark>→11</mark>	
CMS	5→2	5→2	4→2	5→3	7→4	10→7	5→2	12→10	8→8	6 →3	

Higgs Coupling Constraints in the K framework BSM: Allowing for BR (Undetected) and BR (Invisible)

Negative sign for K_b *slightly* preferred due to small ggF production excess over SM expectations

LHC Higgs Cross-Section WG 2013: CERN-2013-004 arXiv:1209.0040. arxiv 1310.4828

Higgs Couplings to Fermions and Bosons: Set all fermion scale factors to κ_F , W & Z scale factors to κ_V

