

Searches for Exotic Mesons: Perspective from the GlueX Experiment

March 9, 2023 Jon Zarling

Hadrons by Constituents

백묘백

Hybrid meson

GLUE

Q

Hadrons by Constituents

₩<u>₩</u>₩

J. Zarling ---- LISHEP C 2023

Constituent Model Mesons

Quark Model Meson

• $q \overline{q}$ pair

 $_{\circ}~$ Meson as simple two-fermion system

• Quantum numbers *J^{PC}*:

- \circ **J**: total angular momentum, whole integer
- *P*: parity, $(-1)^{L+1}$
- *C*: charge conjugation $(-1)^{L+S}$

• Some quantum numbers unreachable:

· 0⁺⁻, 1⁻⁺, 2⁺⁻, ...

Constituent Model Mesons

Quark Model Meson

- $q \overline{q}$ pair
 - Meson as simple two-fermion system
- Quantum numbers J^{PC}:
 - $_{\circ}~J$: total angular momentum, whole integer
 - $\circ P$: parity, $(-1)^{L+1}$
 - ∘ *C*: charge conjugation $(-1)^{L+S}$
- Some quantum numbers unreachable:
 0⁺⁻, 1⁻⁺, 2⁺⁻, ...

Hybrid Meson

- *qqq* constituents

 Add "dressed" gluon constituent
- Quantum numbers **J**^{PC}:
 - Same rules, but with added gluon

- $_{\circ} g$ contributes $J^{PC} = 1^{+-}$
- Now reachable:
 0⁺⁻, 1⁻⁺, 2⁺⁻, ...

Constituent Model Mesons

Quark Model Meson

- $q \overline{q}$ pair
 - Meson as simple two-fermion system
- Quantum numbers J^{PC} :
 - $_{\circ}~J$: total angular momentum, whole integer
 - $\circ P$: parity, $(-1)^{L+1}$
 - ∘ *C*: charge conjugation $(-1)^{L+S}$
- Some quantum numbers unreachable:
 0⁺⁻, 1⁻⁺, 2⁺⁻, ...

Hybrid Meson

- *qqq* constituents

 Add "dressed" gluon constituent
- Quantum numbers **J**^{PC}:
 - $_{\circ}\,$ Same rules, but with added gluon

- $_{\circ} g$ contributes $J^{PC} = 1^{+-}$
- Now reachable:

If observed, <u>cannot</u> be $q \bar{q}$ meson, call these "exotic"

Predictions from Lattice QCD

백묘백

Evidence for Exotics?

• Best evidence exists for a $\pi_1(1600)$ exotic meson

 $\begin{array}{c} \pi^{-} & \eta^{(')} \\ & \pi^{-} \\ p & p \end{array}$

- Recent evidence from COMPASS experiment
 - A state decaying to $\pi \eta^{(\prime)}$ with angular momentum 1 <u>must</u> be exotic

Exotic Hybrid Decay Modes

Lattice QCD calculation of lightest exotic hybrid (i.e. $\pi_1(1600)$)

- A number of significant decay modes + relative rates
- $b_1\pi$ decay dominant

ነት 🏢 🐺

• COMPASS $\eta^{(\prime)}\pi$ results may only be small fraction of $\pi_1(1600)$

Exotic Hybrid Decay Modes

Lattice QCD calculation of lightest exotic hybrid (i.e. $\pi_1(1600)$)

- A number of significant decay modes + relative rates
- $b_1\pi$ decay dominant
- COMPASS $\eta^{(\prime)}\pi$ results may only be small fraction of $\pi_1(1600)$

GLUE

Experimental results:

Exotic signals reported in most modes

See review: Meyer and Swanson PPNP 82, 21 (2015)

Another New Exotic Candidate?

ነት 🎁 🕅

Photoproduction Reactions

Why study γp interactions?

- Compliment, cross check πp measurements
- Polarized photon beam: additional observable
- Many J^{PC} states X directly accessible
- Past measurements:
 - Bubble chambers from ~ 1970s
 - No neutral detection
 - Statistics: orders of magnitude improvement possible today

GlueX at Jefferson Lab

- Newport News, Virginia, USA
- 12 GeV electron accelerator
- Secondary Photon beam ~ 3-12 GeV

GLUE

Tagger Hall (photon beam)

GlueX Detector Hall

GlueX Polarized Photon Beam

Beam photons:

- Energy inferred from outgoing electrons
- Wide spectrum of energies (3-12 GeV)
- Enhancement at ~ 9 GeV:
 - Increases beam flux
 - Roughly 35% linear polarization

GlueX Detector

- Key features
 - Wide acceptance
 - Charged particle detection
 - Photon detection
- GlueX-I dataset:
 - 2016-2018 data collection
 - Four directions of linear polarization
 - 125 pb⁻¹ (8.2<*E_γ*<8.8 GeV)
- GlueX-II (ongoing): expect 3-4× stats

Production Mechanisms

Common features of production:

- Meson exchange(s) in t-channel (for relevant energies)
- Contributions vary over Mandelstam t
- Theory modeling: determine exchanges
 - Known mesons that couple to system
 - Reflectivity: new quantum number $P(-1)^J$
 - + or reflectivity

Spin-0 example:

• ρ , ω , b, h could contribute

Production Mechanisms: Spin-0 Case

- Observable Σ : +1 for pure natural exchange, -1 for unnatural
- Several publications constraining spin-0 meson production

$$\gamma p \to \pi^0 p$$

$$\gamma p \rightarrow \eta p$$

$$\gamma p \rightarrow \pi^- \Delta^{++}$$

Production Mechanisms: Spin-1 Case

- Study angular dependence in c.m. decay angles(θ, ϕ) and polarization magnitude, direction P_{γ}, Φ
- Parameterized by 9 linearly independent ρ_{ji}^k
- Theory phenomenology: Regge + pomeron exchange
- ρ meson case: paper undergoing internal review
 - Well modeled for $|t| < 0.5 \text{ GeV}^2$
- ω, ϕ vector mesons: also under study

Exclusive η Mesons Production

- Excellent coverage to far-backward angles
- Further constrain production descriptions
- Near-term publication

 $\gamma p \rightarrow \eta p$

Non-resonant Production

Hybrid searches using $\pi \eta^{(\prime)}$:

- Non-resonant features near $\cos \theta = \pm 1$
- Parameterize, constrain to data
- Under detailed study at GlueX

Non-resonant Production

Hybrid searches using $\pi \eta^{(\prime)}$:

- Non-resonant features near $\cos \theta = \pm 1$
- Parameterize, constrain to data
- Under detailed study at GlueX

GLUE

Formalisms from JPAC theory group

The $\pi\eta$ Spectrum at GlueX

Mass independent intensity fits with formalism:

GLUE

Amplitude formalism $Z_l^m(\Omega, \Phi) = Y_l^m(\Omega, \Phi) e^{-i\Phi}$

JPAC: Mathieu et al PRD 100 (2019) 054017

Intensity(Ω, Φ):

$$2\kappa \left\{ \left(1 - P_{\gamma}\right) \left| \sum_{l,m} [l]_{m}^{(-)} \operatorname{Re}[Z_{l}^{m}(\Omega, \Phi)] \right|^{2} + \left(1 - P_{\gamma}\right) \left| \sum_{l,m} [l]_{m}^{(+)} \operatorname{Im}[Z_{l}^{m}(\Omega, \Phi)] \right|^{2} + \left(1 + P_{\gamma}\right) \left| \sum_{l,m} [l]_{m}^{(-)} \operatorname{Im}[Z_{l}^{m}(\Omega, \Phi)] \right|^{2} \right\}$$

Naturality $N = P(-1)^{J}$ N=+1 'natural' for 0+ etc Reflectivity = N(exchanged particle) x N(resonance)

Reflectivity + natural parity exchange Reflectivity - unnatural parity exchange

The a_2 (1320) meson in $\gamma p \rightarrow \pi \eta p$

Invariant mass($\eta \pi^{0}$) 0.1 < |-t| < 0.2 GeV² Entries / 40 MeV Entries / 40 MeV 8000 8000 S_0^+ S_0^- 6000 6000 4000 4000 2000 2000 GLUE 1.2 1.6 1.4 1.2 1.4 1.6 $M(\eta\pi)$ [GeV/c²] $M(\eta\pi)$ [GeV/c²] Preliminary Entries / 40 MeV Entries / 40 MeV 8000 D_{2}^{+} 8000 D_1^- 6000 6000 ρ, ω exchange π exchange 4000 4000 S_0 2000 2000 $a_2(1320)$ Theory 1.2 1.4 1.6 1.2 1.4 1.6 $M(\eta\pi)$ [GeV/c²] $M(\eta\pi)$ [GeV/c²]

GLUE

Reflectivity + natural parity exchange Reflectivity - unnatural parity exchange

ש 🛄 ש

Outlook for $\gamma p \rightarrow \pi \eta^{(\prime)} p$

Near-term publication on $a_2(1320)$

• Amplitude analysis

ឃ 🛄 ឃ

- Differential cross section
- Same approach to be used for hybrid search

Isoscalar Hybrid at GlueX?

GlueX-II dataset needed, but will have comparable statistics to BESIII

GLUE

M. Ablikim et al. (BESIII) PRL **129,** 192002 (2022)

ਘ 💼 ਘ

Understanding b_1 Photoproduction

ነት 🎁 🐺

Exclusive J/ψ Cross Section

w 🛄 w

- Most cited GlueX result to date
- Another publication ready to submit w/ improved statistics

Search For LHCb Pentaquark?

- Model-dependent upper limits at 90% CL: $J^p = 3/2^-, L = 0$
- Br(Pc(4312) \rightarrow J/ ψ p) < 4.6%
- Br(Pc(4440) \rightarrow J/ ψ p) < 2.3%
- Br(Pc(4457) \rightarrow J/ ψ p) < 3.8%

28

Exclusive J/ψ Photoproduction

 $\bar{D}^{(*)}(\Lambda_c)$

 $\Lambda^+_{a}(\bar{D}^{(*)})$

Intermediate

open-charm state

 \mathcal{L}^{γ}

 $D^{(*)}(\Lambda_{a}$

ነት 🏢 🐺

Potential structure in cross section?

- $D^{(*)}\Lambda$ threshold effect?
- 2.6 σ significance
- 1.3 if "look elsewhere" effect used

GLUE

 J/ψ

 $D^{(*)}(\Lambda_c)$

Additional *cc* States at GlueX

- More states, e.g. ψ' , within energy reach (can't say more today)
- Exotic $c\bar{c}$ candidates could be reached with proposed upgrade

http://gluex.org/thanks/

GLUE

- Program: confirm, extend list of candidates for non- $q\bar{q}$ mesons
 - Well underway

Conclusion

- Production well constrained
- Amplitude analysis of known states
- Stay tuned!

Backup: Probing the Dark Sector w/ η Mesons

Interest in new sub-GeV dark sector:

- Vector, scalar, axion-like candidates
- X(17) protophobic boson candidate

Main search channel: $\eta \rightarrow \gamma \gamma \pi^0$

 $\eta \rightarrow ALP + \cdots$

