Highlights of SM and Top results from CMS

LISHEP Workshop on High Energy Physics – Section C – Cosmology & Particle 6-10 March 2023, Rio de Janeiro, Brazil

PROLAY MAL NATIONAL INSTITUTE OF SCIENCE EDUCATION & RESEARCH BHUBANESWAR, INDIA

LHC Performance

- LHC Run III started in 2022 at $\sqrt{s}=13.6$ TeV and LHC has been setting new record-breaking luminosity
- Exceedingly well performance by the LHC with delivered luminosities increasing rapidly
- Many precision measurements and rare processes studies have been plausible mostly due to the LHC performance "beyond the design goal".

STANDARD MODEL COLLIDER

Impressive Accuracy for SM Measurements

Observation of W⁺W⁻VBS at the LHC

- Precision measurement with the Vector Boson Scattering (VBS) processes are important for probing the Higgs sectors and hence understanding the electroweak symmetry-breaking
- Oppositely charged leptons with two jets (having high pseudorapidity gap) to target for the WW+2 jets events with the rejection for the QCD-induced processes and ttbar processes.
 - □ Full Run 2 dataset with event selection for two Isolated leptons (electron/muon) with p_T > 25 (13) GeV, and m_{II} > 50 GeV and 2 jets along with the Missing Transverse Energy p^{mis}_T > 20 GeV
 - At least two jets with pT>30 GeV , $\Delta \eta_{jj}$ >2.5 and m_{jj}>300 GeV
 - Further event categorization based on final state lepton flavors

CMS

Observation of W⁺W⁻VBS at the LHC

arXiv:2205.05711; accepted by PLB

Signal enriched eµ region

Observed (expected) signal significance of 5.6σ (5.2σ)

- Data-driven background normalization using dedicated control regions for major backgrounds-- Top, DY
- Deep Neural Network training to identify signal events
- W+W- VBS fiducial cross-section measured through simultaneous fits of DNN and other discriminating observables:

 $\sigma_{fiducial} = 10.2 \pm 2.0 \text{ fb}$ $\sigma_{SM} = 9.1 \pm 0.6 \text{ fb}$

Wγ+ 2 jets production at the LHC

- Precision measurement with the Vector Boson Scattering (VBS) processes are important for probing the Higgs sectors and hence understanding the electroweak symmetry-breaking
- Event selection optimized for the Vector Boson Scattering (VBS) signal (Wγ+2 jets) with the rejection for the non-VBS electroweak (EWK) and QCD-induced processes
 - Isolated electron/muon p_T> 35 GeV, a photon (p_T> 25 GeV) and 2 jets along with the Missing Transverse Energy p^{mis}_T> 30 GeV
 - Large pseudorapidity difference between the jets and azimuthal balancing between (jets, Wγ) systems

Wγ+ 2 jets Cross-section Measurements

□ Measurement of EWK-only and EWK+QCD fiducial and differential cross-sections in several observables -- p_T^{γ} , p_T^{-1} , p_T^{-j1} , m_{jj} , $m_{l\gamma}$, $\Delta \eta_{jj}$ axXiv:2212.12592; submitted to PRD

Measurements are consistent with the SM predictions :

 σ_{EW}^{fid} = 19.2 ^{+4.0} _{-3.9} fb & σ_{EW+QCD}^{fid} = 90 ^{+11.}-10 fb

CMS

$\gamma\gamma \rightarrow WW/ZZ$ production at the LHC

CMS-SMP-21-014; submitted to JHEP

 \diamond Aim to probe SM quartic coupling at tree level :

SSM contributions (resonant and non-resonant) accessed through effective-field-theory (EFT) approach

 $\diamond\, {\sf Events}$ with in-tact protons in the forward region

 \diamond PPS can detects proton momenta ~200m from the CMS IP using the LHC magnets

♦ SM cross-sections: 50 fb (γγ→WW) & 0.5 fb (γγ→ZZ)

$\gamma\gamma \rightarrow WW/ZZ$ production at the LHC cm

EFT Dimension-8 operators are constrained as well LISHEP2023, Rio de Janeiro, March 6-10, 2023

Summary of SM Measurements

Overview of CMS cross section results

Measured cross sections and exclusion limits at 95% C.L. See here for all cross section summary plots

Inner colored bars statistical uncertainty, outer narrow bars statistical+systematic uncertainty Light colored bars: 7 TeV. Medium bars: 8 TeV. Dark bars: 13 TeV. Black bars: theory prediction

Highlights of CMS Top results (Run II & Run III)

Top quark production modes at LHC Other productions Dominated by $t\bar{t}$ pairs productions $g_{\sim}_{\sim}_{\sim}_{\sim}_{\sim}_{\sim}$ g g g 11 000000 00000000 m W' g ~9999 g -995

gluon-gluon fusions

(~ 90%)

quark-antiquark annihilation (~10%)

Single top-quark productions

Top pair-production cross-section at $\sqrt{s}=13.6$ TeV

CMS-PAS-TOP-22-012

Source	Uncertainty (%)
Lepton ID efficiencies	3.4
Jet energy scale	1.6
b tagging efficiency	1.5
Pileup reweighting	0.7
ME scale, tī	0.6
ME scale, backgrounds	0.2
PDF and $\alpha_{\rm S}$	0.3
ME/PS matching	1.1
ISR scale	0.4
FSR scale	0.1
Single-t background	0.6
Z+jets background	0.9
W+jets background	0.4
Diboson background	0.1
Nonprompt background	0.2
Statistical uncertainty	0.5
Combined uncertainty	4
Jet energy scale (external)	2
Integrated luminosity	6

 $\Box \sigma_{\text{measured}} = 887 + 43_{-41} \pm 53$ (lumi) pb $\Box \sigma_{\text{SM}} = 921 + 29_{-37}$ pb

Inclusive/differential tW production

- Inclusive and normalized differential cross-section measurements in dilepton final states with full Run 2 dataset at Vs=13 TeV
- □ At NNLO theoretical prediction:

 σ_{SM} = 71.7 ± 1.8 (scale) ± 3.4 (PDF) pb

- Signal simulation using NLO PowHeg with Diagram Removal (DR) and Diagram Subtraction (DS) schemes due to large interference with ttbar processes
 - Nominal analysis with DR scheme, while the differences with respect to DS considered as systematic uncertainty

Inclusive tW production

- Basic event preselection with eµ final states
 - □ Single lepton and dilepton triggers depending on the data-taking period
 - □ Isolated electrons/muons with p_T >20 GeV and $|\eta|$ <2.4
 - **Leading lepton** p_T >25 GeV, and oppositely charged leptons with M_{\parallel} >20 GeV

arXiv:2208.0092

□ Jets with p_T >30 GeV and $|\eta|$ <2.4 with b-tagging

Inclusive tW production

- Further discrimination based on the BDTs against the ttbar background
- Maximum likelihood fits with BDT and sub-leading jet pT (2j2b)
- Measures cross-section consistent with the SM prediction:

 $\sigma_{\text{Measured}} = 79.2 \pm 0.9 \text{ (stat)}^{+7.7}_{-8.0} \text{ (syst)} \pm 1.2 \text{ (lumi) pb}$

arXiv:2208.0092

Process	1j1b	2j1b	2j2b
W	31600 ± 600	16600 ± 500	5500 ± 200
t	131200 ± 500	160300 ± 600	141100 ± 400
Drell–Yan	3990 ± 190	1630 ± 100	260 ± 20
∕V+tīV	2800 ± 300	3300 ± 500	1700 ± 400
Non-W/Z	1140 ± 150	3700 ± 700	470 ± 120
lotal	170800 ± 300	185400 ± 400	149100 ± 300
Data	170900 ± 400	185400 ± 400	148900 ± 400

Differential tW production

- Fiducial cross-sections are unfolded into the particle level cross-sections
 - (with similar kinematic selection for the particle level objects)
- □ Differential measurements performed using 1b1j events with veto on loose jets (20<p_T<30 GeV) in the final states
- Measured as functions of various physical observables: leading lepton p_T, jet p_T, Δφ (e,μ), m(e,μ), pz (e,μ,jets), m_T (e,μ, jets, missing E_T)
- Overall good agreement between Data and MC; consistent with DR and DS schemes

arXiv:2208.0092

Measurements for ttW processes

- Final state signatures with multiple leptons (production mode correlated with lepton charges), jets and b-tagged jets
- Inclusive cross-section and charge asymmetry measurements in multi-lepton final states with full Run 2 dataset at Vs=13 TeV
 - **■** NLO QCD+EW effects included prediction $\sigma_{SM} \approx 597-722$ fb

 Same-sign dilepton (2ISS) – DNN based discrimination between signal and background
Trilepton channel (3I) with categorization of events based on the number of jets, b-jet multiplicity, charge of the leptons.

Additional control regions (3I and 4I) to target WZ, ZZ and ttZ

Number of b-tagged jets

Inclusive ttW cross-section Measurements

- ttW cross-section extracted using binned profile likelihood fits using the distributions of DNN output (2S) and trilepton invariant mass (3I)
- Precision improvement by factor of 2 with respect to the 2016 measurements [JHEP 08 (2018) 011]

$ttW^{\pm}\ Charge\ A symmetry\ Measurements$

- ttW[±] measurements have direct implications on the proton PDFs
- Simultaneous fit for the positive and negative lepton system charges respectively for ttW+ and ttW-
- Consistent with the latest theoretical calculations [JHEP 11 (2021) 029]

arXiv:2208.06485

Evidence for 4 tops

101 fb⁻¹ (13 TeV)

tītī

data

Uncertainty

8+

Search for 4 tops with 0, 1, 2 leptons in the final states with boosted and resolved categories \succ Hadronic final states with \geq 9 jets, \geq 3 b-tagged jets, event H_T \geq 700 GeV; BDT-based discriminator Categorization based on b-jet multiplicity, resolved jet multiplicity and lepton flavors

- > Sensitive to the New physics models variety of new physics (2HDM, compositeness, SUSY) scenarios can be probed
- > 101 fb⁻¹ (2017+2018) for dilepton channel; full Run 2 dataset for hadronic and single-lepton channels

Evidence for 4 tops

> BDT discriminant based on jet kinematics, jet multiplicity, b-jet multiplicity and top tagging

BDT distributions are the final observables for signal extraction

Summary & Conclusions

Ouring the LHC era, the statistics of SM & top quark events in data has reached to a new level leading to the CMS measurements at an unprecedented precision

 \diamond No deviation from the SM have been observed so far

Many new measurements have already been performed/completed with the full/partial Run 2 dataset

Increased statistics allows the scope for differential cross-section measurements in SM and Top quark processes

EWK VBS and rare top quarks processes have been observed/established

Run 3 statistics would improve the measurement precision further, although with additional pile-up events

 $\diamond \mathbf{Scope}$ for probing the BSM physics further

References

♦ SM: <u>https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSMP</u>
♦ Top: <u>https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsTOP</u>