

ISHEP 2023

International School on High Energy Physics

DETECTORES DE PARTÍCULAS

HELIO NOGIMA

Detectores de partículas

1. Experimentos de Física de Altas Energias.

2. Processos básicos da interação da radiação com a matéria.

3. Dispositivos detectores.

Desenho de elementos detectores

- ✓ Fundamentalmente, cargas elétricas devem induzir uma corrente elétrica (secundária) relevante para formar o sinal elétrico de detecção.
- ✓ Normalmente a interação da partícula com o material do detector não produz carga suficiente gerar um sinal elétrico viável para a leitura.
- O projeto do detector deve levar em contas a necessidade de multiplicação dos elétrons da interação primária, ou o sinal deve ser amplificado eletronicamente.
- ✓ A ionização gera elétrons primários, mas processos de excitação atômica ou coletiva produzem fótons e por isso precisam de ao menos duas etapas para a detecção.

Magnetic field

Detectores de ionização

• O primeiro detector "eletrônico" foi o modelo desenvolvido por Geiger e Rutherford, que posteriormente evoluiu para o popular Geiger-Muller.

Detector a gás – Regimes de operação

- II Câmara de ionização: Apenas os elétrons/íons primários são gerados.
- III Contador proporcional: Ocorre o processo de avalanche, onde os elétrons são multiplicados.
- IV Contador Geiger-Müller: A proporcionalidade deixa de existir, produzindo uma descarga saturada.

Anode Wire

MWPC - Câmara Proporcional Multifilar

Primeiro detector de posição completamente eletrônico. Consiste de um plano igualmente espaçado de fios ânodos centrados em dois planos cátodos. Espaçamento entre os fios é tipicamente de 2 mm e entre ânodo e cátodo 7-8 mm.

A resolução na posição apenas com o dado lógico dos fios é da ordem de 600 μ m.

Georges Charpak Nobel 1992

MWPC - Câmara Proporcional Multifilar

- A leitura bidimensional pode ser feita através da segmentação do cátodo.
- Através do centro de gravidade dos sinais é possível obter uma resolução temporal da ordem de 50 μm.

 A adição de um segundo plano cátodo segmentado, ajuda na solução de ambiguidades no caso em que mais de uma partícula incide no detector.

plane

wires

anode signals

Câmara de Arrasto (Drift Chamber)

 Usa o tempo de chegada dos elétrons no fio, t₁, para obter a informação espacial. Se o tempo de chegada da partícula, t₀, e a velocidade de arrasto, u, são conhecidas:

$$x = \int_{t_0}^{t_1} u dt$$

A resolução espacial típica é da ordem de $100 - 50 \ \mu m$.

LISHEP 2023

TPC – Câmara de projeção temporal

- É um sistema cilíndrico com eixo coincidente com os feixes e centrado na região de colisão
- Junção das tecnologias MWPC e de câmara de arrasto para formar um detector de trajetografia tridimensional.
- A coordenada radial é obtida pelas pads que são adotadas como cátodos nas MWPCs, formando células de posição.
- A coordenada z, ao longo do feixe é obtida através do tempo de arrasto.

 O campo magnético é paralelo à direção de arrasto dos elétrons da ionização, não afetando portanto a trajetografia.

TPC – Câmara de projeção temporal

identificação de partícula.

TPC – Câmara de projeção temporal

d*E*/dx in TPC (arb. units)

MPGD – Micro Pattern Gaseous Detector

- Empregam a microeletrônica e tecnologia de fotolitografia para a construção de dispositivos baseados em substratos de circuitos impressos (PCB).
- Os efeitos do processo de difusão e de espaço de carga são reduzidos com o emprego de estruturas microscópicas desenhadas para a multiplicação de elétrons.
- As características destes dispositivos são:
 - resolução espacial até 20 μm;
 - resolução temporal na ordem de ns;
 - capacidade de suportar taxas de até 10⁶ Hz/mm²;
 - grande área sensível;
 - Larga escala dinâmica;
 - alta tolerância à radiação;
 - baixo custo para cobertura de grandes áreas.

MPGD – Tipos comuns

• MSGD – Micro Strip Gaseous Detector

- GEM Gas Electron Multiplier
- Micromegas Micro-mesh Gaseous Structure

RPC – Câmara de placas resistivas

- Detector de eletrodos paralelos para produzir um intenso campo elétrico.
- Os eletrodos são resistivos permitindo a captação da corrente induzida em ambos os lados.
- Possibilita a construção de detectores para cobertura de grandes áreas ($\sim 10^4 m^2$).
- Eficiência: (> 95%).
- Resolução temporal típica: (~0.4 ns).

RPC – Câmara de placas resistivas

RPC – Câmara de placas resistivas multi-gap

- A resolução temporal é inversamente proporcional ao tamanho do gap.
- O gap pode ser subdividido por vários eletrodos de potencial flutuante.
- A flutuação na coleta de carga diminui e a resolução temporal chega a 20 ps, para pilhas de gaps de 0.1 mm.
- Através da técnica de centróide de carga em tiras finas a resolução espacial pode ser melhor que 40 μm.

Detectores Semicondutores

- São detectores de ionização, como os detectores a gás, onde e^-/i on $\rightarrow e^-/b$ uraco
- O modelo básico é o de uma junção PN, como um diodo, operando em polarização inversa.

Bandas de energia dos materiais

Junção pn

Polarização inversa

Detectores Semicondutores

- Polarização inversa em uma junção pn cria uma larga zona de depleção de carga.
- Par buraco/elétron é criado na região de depleção de carga.
- Energia necessária para criação buraco/elétron ~10 vezes menor do que ionização em gases.

- Os detectores semicondutores não possuem multiplicação intrínseca de carga. Necessitam de amplificação eletrônica.
- Dada a baixa energia necessária para criar um par buraco/elétron, apresenta maior ruído do que o encontrado em detectores de ionização.

Detectores Semicondutores

Detector Pixel

Matriz de minúsculos detectores para determinação da posição de incidência de partículas carregadas. Pixel readout cell / bus Readout chip Charged particle

Charged

Cada detector é soldado diretamente à eletrônica de leitura através de pequenas esferas de solda de $\sim 50 \mu$ m.

- O processo de excitação atômica ou coletiva de certos materiais possibilitam a detecção através da luz emitida.
- Quando expostos a certas formas de energia, esses materiais absorvem e reemitem essa energia na forma de luz visível.
- Se a reemissão ocorre dentro de um intervalo de tempo de ~10⁻⁷ s o processo é chamado *fluorescência*.
- se a reemissão é atrasada devido ao estado excitado ser metaestável o processo é chamado *fosforescência*.

- O processo de emissão é caracterizado por uma rápida subida e um decaimento exponencial.
- Em geral, o decaimento é caracterizado por duas escalas de tempo.
- Várias informações podem ser extraídas com os sinais dos cintiladores:
 - Energia: Acima de uma energia mínima, a maior parte dos cintiladores comportam-se de forma aproximadamente linear com a energia depositada pela radiação
 - Informação temporal: Os cintiladores são dispositivos rápidos comparados a outros tipos de detectores.
 - Discriminação por forma de onda: Com esta característica, alguns cintiladores são capazes de distinguir o tipo de radiação incidente.

$$N = A \exp\left(\frac{-t}{\tau_f}\right) + B \exp\left(\frac{-t}{\tau_s}\right)$$

Cintiladores

- Os tipos de materiais cintiladores são:
 - Cristais orgânicos;
 - Líquidos orgânicos;
 - Plásticos;
 - Cristais inorgânicos;
 - Gases;
 - Vidros.
- Os cintiladores plásticos são os mais usados em física de partículas.
 - São extremamente rápidos, com tempo de decaimento de $\sim 2 3$ ns.
 - Alta produção de luz, 50 68 % do antraceno.

LISHEP 2023

Detectores cintiladores

- Além do material cintilador, o detector deve ser composto por um guia de luz e um fotossensor, para a conversão do sinal elétrico.
- A função do guia de luz é conduzir a luz ao fotossensor, minimizando as perdas.

• A fotomultiplicadora (PM) é o fotosensor mais utilizado com cintiladores, principalmente quando a área de coleção é da ordem ou maior que 2 polegadas.

Fotomultiplicadoras

Fator de multiplicação:

$$M = g^N$$

onde *N* é o número de dinodos e *g* é a multiplicação em cada dinodo.

- Fotossensor com amplificação de sinal.
- Efeito fotoelétrico e multiplicação de elétrons: 10⁵ 10⁷.
- Eficiência quântica do fotocátodo: ~20%.
- Tamanho do fotocátodo: 1 cm 50 cm
- Aplicações em processos envolvendo baixa intensidade luminosa.
- Largamente utilizado na detecção de partículas, quando associadas a materiais cintiladores.

APD – Fotodiodos de avalanche

- Utilizando um esquema de dopagem mais complexa é possível a multiplicação dos pares elétron-buraco.
- Operam em modo proporcional, a carga elétrica total é proporcional ao número de elétrons primários.
- Multiplicação da ordem de 1000 vezes.

SiPM – Fotomultiplicadoras de silício

- Arranjo de células de APDs combinadas com resistores.
- Cada célula opera em modo não proporcional Geiger. Mas cada uma contribui para a carga final do arranjo
- Multiplicação da ordem de 10⁶.

APD de 2mm de área sensível da Hamamatsu

SiPM de 3x3 mm² com células de 15 μ m da Ketek

Detectores Cherenkov

Detector diferencial, tipo Fitch

- Utiliza tanto o limiar de produção de luz, quanto o ângulo de emissão da luz para selecionar uma banda de β.
- O ângulo crítico para a reflexão interna pode ser obtido pela lei de Snell

$$\sin \theta_t = \frac{1}{n}$$

• Sabendo que o ângulo de emissão é

$$\cos \theta_c = \frac{1}{\eta \beta} \rightarrow \beta_{max} = \frac{1}{\sqrt{n^2 - 1}}$$

Detectores Cherenkov

Ring Imaging Cherenkov - RICH

r determina β por

$$r = f \cdot \theta_c = \frac{R_S}{2} \cdot \theta_c$$
$$\cos \theta_c = \frac{1}{\beta} \rightarrow \beta = \frac{1}{n \cos \frac{2r}{R_S}}$$

interaction point particle 2 detector surface R radiator pherical mirror with radius $R_{\rm S}$

particle 1

 $R_S = \frac{R}{2}$

se p é conhecido obtém-se a massa da partícula por

$$p = \gamma m_0 \beta c = \frac{m_0 c \beta}{\sqrt{1 - \beta^2}}$$

е

RICH - Aplicação

-80

1.6

Momentum (GeV/c)

р

Detector por Radiação de Transição

- Um típico arranjo é constituído de um conjunto de folhas de um material de pequeno Z.
- O detector dos fótons deve ser sensível aos raios-X.
- A partícula também atravessa o detector, produzindo sinal adicional.

Detector por Radiação de Transição

Conclusão e Comentários

✓ Ao nível do elemento detector sensível à passagem das partículas, apenas alguns processos físicos são empregados.

- ✓Os detectores de partículas são construídos com diversas tecnologias. Conhecê-las é importante para o físico experimental que opera com os seus dados.
- ✓A instrumentação é crucial para alcançar a fronteira da física de partículas.

✓O desenvolvimento de sistemas detectores para as futuras gerações de experimentos demanda uma grande força de trabalho.