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Dark Matter Direct Detection Experiment

The Earth is immersed in a dark matter halo (ρDM ~ 0.3 GeV/cm3) 

Dark Matter in such a halo has a velocity distribution (<vDM>~220km/s) 

The Sun moves at a speed of 220 km/s around the Galaxy.  

(The Earth moves around the Sun with a speed of 30 km/s)

Dark matter scatters a nucleus of the detector 
material and deposits recoil energy.
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vDM For example, the recoil energy is detected 
through ionization, scintillation, and the 
production of heat in the detectors. recoil energy



How is the Nucleus Scattering detected ?
e.g. Liquid Xenon (LXe) Detector
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Recoiled Xe loses its energy 
via (in)elastic scattering with
other Xe.
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Inelastic scattering leads to
excitation/ionization of Xe’s.

The excited/ionized Xe’s 
form excited molecular 
(excimer). 
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Excimer eventually decays by emitting a photon with a 
characteristic wave length (~ 175nm )
                                              = scintillation photon !

γ

Scintillation photons & emitted electrons @ ionizations
Nuclear recoil is detected by looking for 

(Typical Time Scale ~ O(1)ns - O(10)ns )
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# scintillation photon ∝ Recoil Energy



What is missing in the conventional analysis?

In conventional analysis, the recoiled nucleus is treated as 
a recoiled neutral atom. 
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In reality, it takes some time for the electrons to catch up…
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The process to catch up causes electron excitations/ionizations!
→ Migdal Effect [1939, Migdal]
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[ ’05 Vergados&Ejiri, ’07 Bernabei et al.  Application to DM detection ]



Migdal’s approach
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Just after the nuclear recoil, we assume only the nucleus is 
moving while the electron cloud is left behind.
(The electron clouds are no more in the energy eigenstates.)

Take the rest frame of the nucleus by the Galilei transformation. 
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In this frame, the wave function of the electron cloud looks like :
approach, the state of the electron cloud just after a nuclear recoil is approximated by

|�0
eci = e�ime

P
i v·x̂i |�eci , (1)

in the rest frame of the nucleus. Here me is the electron mass, x̂i the position operator of the

i-th electron, v the nucleus velocity after the recoil, and |�eci the state before the nuclear

recoil. The probability of the ionizations/excitations is then given by,

P = |h�⇤
ec|�

0
eci|

2 , (2)

where |�⇤
eci denotes either the ionized or excited energy eigenstate of the electron cloud.

In the conventional estimation of the Migdal e↵ect, the final state ionizations/excitations

are treated separately from the nuclear recoil. Accordingly, the energy-momentum conser-

vation is made somewhat obscure. In this paper, we reformulate the Migdal e↵ect so that

the “atomic recoil” cross section is obtained coherently. In our reformulation, the energy-

momentum conservation is manifest while the final state ionizations/excitations are treated

properly. We also provide numerical estimates of the ionization and the excitation proba-

bilities for isolated atoms of Ar, Xe, Ge, Na, and I, where we use the single electron wave

functions obtained by the Dirac-Hartree-Fock method.

The Migdal e↵ect should be distinguished from the ionizations and the excitations in

scintillation processes, for example. The Migdal e↵ect takes place even for an isolated atom,

while the latter occur due to the interaction between atoms in the detectors. Furthermore,

the Migdal e↵ect can lead to ionizations/excitations from the inner orbitals, which are

not considered in scintillation processes. As we will see, the ionizations/excitations from

the inner orbitals lead to extra electronic energy injections in a few keV range, which can

enhance the detectability of a rather light dark matter in the GeV mass range even through

the nuclear scattering.

The organization of the paper is as follows. In Sec. II, we construct approximate energy

eigenstates of an atomic state by paying particular attention to the total atomic motion. In

Sec.III, we reformulate the atomic recoil cross section with the Migdal e↵ect by taking the

energy eigenstates in Sec. II as asymptotic states. In Sec. IV, we calculate the Migdal e↵ect

with single electron wave functions. In Sec.V, we estimate the probabilities of the ionizations

and the excitations at a nuclear recoil for isolated atoms. In Sec.VI, we discuss implications

for the dark matter direct detections. The final section is devoted to our conclusions and
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Electron wave function in the 
initial state e.g. the ground state.
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The probability of the excitation/ionization is given by



Disadvantage of the Migdal Approach

The nuclear scattering and the electron excitations/
ionizations are treated separately.

Energy Momentum Conservation is not clear… 

Where does the electron get energy & momentum?

→ It is important to reformulate the Migdal effects in a more coherent way !

It is not clear whether the electron excitation energy can be 
larger than the recoil energy or not.



Reformulation of the Migdal Effect

Migdal’s approach

Initial state of the DM scattering :  (DM plane wave) x (Nucleus plane wave)
Final state of the DM scattering :   (DM plane wave) x (Nucleus plane wave)
Migdal Effect = Final state effects 

New approach

Initial state of the DM scattering :  (DM plane wave) x (Atomic plane wave)
Final state of the DM scattering :   (DM plane wave) x (Atomic plane wave)

The Migdal Effect is automatically taken into account !

The Migdal Effect is treated separately from the nuclear scattering

How do we construct the plane wave function of the atoms?



Construction of the atomic plane wave

discussion. In the appendixD, we also briefly discuss the Migdal e↵ect in the neutrino-

nucleus coherent scattering.

II. ENERGY EIGENSTATES OF ATOMIC SYSTEM

As we will discuss in the next section, the plane wave of a whole atomic system plays an

important role in treating the nuclear recoil and the Migdal e↵ect coherently. To construct

the plane wave of the atom, we first discuss the energy eigenstates of an atomic system

consisting of a nucleus and Ne electrons. In the following, we consider an isolated neutral

atomic system. It should be noted that the electrons are not necessarily bounded by the

nucleus, and hence, the energy eigenstates we construct here include the ionic states with

free electrons.

Since we are interested in nuclear recoil energy smaller than the keV range, the Hamil-

tonian of the system is well approximated by the non-relativistic one,

ĤA '
p̂2
N

2mN
+ Ĥec(x̂N) =

p̂2
N

2mN
+

NeX

i

p̂2
i

2me
+ V (x̂i � x̂N) . (3)

Here p̂N and x̂N denote the momentum and the position operators of the nucleus with a

mass mN , while p̂i and x̂i are those of the i-th electron. The Hamiltonian of the electron

cloud, Ĥec, depends on the position operator of the nucleus, x̂N , through the interaction

potential V̂ (x̂i � x̂N) (i = 1 · · ·Ne). The interaction potential also includes the interactions

between the electrons. In the following analysis, we take the coordinate representation where

the energy eigenequation is reduced to

✓
p̂2
N

2mN
+ Ĥec(xN)

◆
 E(xN , {x}) = EA E(xN , {x}) . (4)

The positions (including spinor indices) of the Ne electrons are represented by {x} collec-

tively.

A. Energy Eigenstates of an Atom at Rest

To solve Eq.(4), let us first consider the eigenstates of Ĥec(xN) for a given xN ,

Ĥec(xN)�ec({x}|xN) = Eec(xN)�ec({x}|xN) . (5)
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Hamiltonian of an isolated atomic system (neutral atom)
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Energy eigenstate of the total atomic system (EA : non-relativistic energy)

The approximated energy eigenstate of the atom at rest.

Since the system is invariant under the spatial translations, the energy eigenvalues do not

depend on xN and the wave functions depend on xN only through {xi � xN};

Eec(xN) = Eec , (6)

�Eec({x}|xN) = �Eec({x� xN}) . (7)

The eigenstates, �Eec({x� xN}), provide a complete orthogonal basis of the electron cloud

for a given xN .

Now let us show that �Eec corresponds to an energy eigenfunction of the whole atomic

system at rest,

 (rest)
EA

(xN , {x}) ⌘ �Eec({x� xN}) . (8)

By substituting  (rest)
EA

to Eq. (4), the energy eigenequation leads to,

p̂2
N

2mN
 (rest)

EA
(xN , {x}) = (EA � Eec) 

(rest)
EA

(xN , {x}) . (9)

Since �Eec depends on xN only through {x�xN}, the momentum of the nucleus is balanced

with the electron momentums,

p̂N 
(rest)
EA

(xN , {x}) = �

NeX

i

p̂i 
(rest)
EA

(xN , {x}) . (10)

Thus, the left-hand side of Eq. (9) is expected to be highly suppressed, i.e.,
⌧

p̂2
N

2mN

�
⇠

me

mN
⇥ Eec , (11)

for  (rest)
EA

. Here we used the fact that the expectation values of the electron kinetic energy

is roughly given by,
⌧

p̂2
i

2me

�
⇠

Eec

Ne
. (12)

Therefore, we find that  (rest)
EA

provides an approximate energy eigenstate with EA ' Eec;

ĤA 
(rest)
EA

(xN , {x}) ' Eec 
(rest)
EA

(xN , {x}) . (13)

This is nothing but the Born-Oppenheimer approximation.

It should be also noted that the state  (rest)
EA

represents the atomic system at rest since

the total momentum of the nucleus and the electron cloud is vanishing,
 
p̂N +

NeX

i=1

p̂i

!
 (rest)

EA
(xN , {x}) = 0 . (14)
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Born-Oppenheimer approximation !

EA = Eec

Electron Cloud Energy Eigenstate for a “fixed” xN :

Electron could system does not depend on where the Nucleus is.

[ V are Coulomb forces between the nucleus-electron and the electron-electron ]



Construction of the atomic plane wave
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Is the Born-Oppenheimer approximation OK ?

The eigenstates, �Eec({x� xN}), provide a complete orthogonal basis of the electron cloud
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3 In passing, Eq. (10) means that the state  (rest)
EA

is also an eigenstate of the total momentum of the atom,

i.e.

 
p̂N +

NeX

i=1

p̂i

!
 (rest)

EA
(xN , {x}) = 0 . (14)

5

Kinetic energy of the nucleus is negligible!
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p̂N +

NeX

i=1

p̂i

!
 (rest)

EA
(xN , {x}) = 0 . (14)
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Construction of the atomic plane wave

(a) (b)

N N

1

Since the system is invariant under the spatial translations, the energy eigenvalues do not

depend on xN and the wave functions depend on xN only through {xi � xN};

Eec(xN) = Eec , (6)

�Eec({x}|xN) = �Eec({x� xN}) . (7)

The eigenstates, �Eec({x� xN}), provide a complete orthogonal basis of the electron cloud

for a given xN .

Now let us show that �Eec corresponds to an energy eigenfunction of the whole atomic

system at rest,

 (rest)
EA

(xN , {x}) ⌘ �Eec({x� xN}) . (8)

By substituting  (rest)
EA

to Eq. (4), the energy eigenequation leads to,

p̂2
N

2mN
 (rest)

EA
(xN , {x}) = (EA � Eec) 

(rest)
EA

(xN , {x}) . (9)

Since �Eec depends on xN only through {x�xN}, the momentum of the nucleus is balanced

with the electron momentums,

p̂N 
(rest)
EA

(xN , {x}) = �

NeX

i

p̂i 
(rest)
EA

(xN , {x}) . (10)

Thus, the left-hand side of Eq. (9) is expected to be highly suppressed, i.e.,
⌧

p̂2
N

2mN

�
⇠

me

mN
⇥ Eec , (11)

for  (rest)
EA

. Here we used the fact that the expectation values of the electron kinetic energy

is roughly given by,
⌧

p̂2
i

2me

�
⇠

Eec

Ne
. (12)

Therefore, we find that  (rest)
EA

provides an approximate energy eigenstate with EA ' Eec;

ĤA 
(rest)
EA

(xN , {x}) ' Eec 
(rest)
EA

(xN , {x}) . (13)

This is nothing but the Born-Oppenheimer approximation.

It should be also noted that the state  (rest)
EA

represents the atomic system at rest since

the total momentum of the nucleus and the electron cloud is vanishing,
 
p̂N +

NeX

i=1

p̂i

!
 (rest)

EA
(xN , {x}) = 0 . (14)

5

✴︎The electrons are not necessarily bounded by the nucleus coulomb force.

All the electrons are bounded by the 
Coulomb force of the nucleus.

Not all the electrons are bounded by 
the Coulomb force of the nucleus
= Ionized atom

The EC wave function can be obtained by e.g. Hartree-Fock approximation !



Atomic wave function
at rest

B. Energy Eigenstates of a Moving Atom

Once we construct the energy eigenstates of an atomic system at rest, the energy eigen-

states of an atomic system moving with a velocity v can be immediately obtained by the

Galilei transformation,

 EA(xN , {x}) ' U(v) (rest)
EA

(xN , {x}) . (15)

Here the unitary operator is given by,

U(v) = exp

"
imNv · xN + ime

NeX

i=1

v · xi

#
. (16)

Under the Galilei transformation, the momentum operators are shifted by

U(v)†p̂NU(v) = p̂N +mNv , (17)

U(v)†p̂iU(v) = p̂i +mev , (18)

and hence, the Hamiltonian is transformed into

U(v)†ĤAU(v) = ĤA + v ·

 
p̂N +

NeX

i=1

p̂i

!
+

1

2
mAv

2 . (19)

Here we define the nominal mass of the atom by

mA = mN +Neme . (20)

By using Eqs. (13), (14), and (19), we find that the boosted wave function  EA satisfies,

ĤA EA(xN , {x}) '

✓
Eec +

1

2
mAv

2

◆
 EA(xN , {x}) . (21)

Therefore, the boosted wave function  EA provides the approximate energy eigenstate with

EA ' Eec +
1

2
mAv

2 . (22)

In summary, the eigenstate of the atomic system is approximated by

 EA(xN , {x}) ' eipN ·xN ei
PNe

i=1 qe·xi (rest)
EA

(xN , {x}) , (23)

pN = mNv , (24)

qe = mev , (25)

6
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ΨEA is not the eigenstates of the momentums of the nucleus and the 
electrons separately !

ΨEA is the eigenstate of the energy and the total atomic momentum !

with the eigenenergy labeled by the energy of the electron cloud and the velocity of the

atom,

EA ' Eec +
1

2
mAv

2 . (26)

It should be noted that  EA(xN , {x}) is not the eigenstate of the nucleus momentum p̂N ,

but the eigenstate of the momentum of the whole atom;

 
p̂N +

NeX

i

p̂i

!
 EA(xN , {x}) = (mAv)⇥ EA(xN , {x}) . (27)

Thus, pN in Eq. (23) parametrizes not the nucleus momentum but the total momentum

pA = mAv, although they are very close to each other in practice. It should be also noted

that the energy eigenstate in Eq. (23) is no more in the realm of the Born-Oppenheimer

approximation for v 6= 0 since they are not the eigenfunctions of Ĥec for a given xN .

III. MIGDAL EFFECT : FROM NUCLEAR RECOIL TO ATOMIC RECOIL

In this section, we derive the recoil cross section of the atomic system, taking into account

the final state ionizations/excitations.

A. Isolated Nuclear Recoil

Before proceeding further, let us first translate the dark matter-nucleus interaction in field

theory to an interaction potential, which will be useful in the later analysis. For now, let us

forget the electron cloud and take the nucleus as a free separated particle. In a relativistic

field theoretical approach, the T -matrix and the invariant amplitude of the process are given

by

TFI = hpF
Np

F
DM |pI

Np
I
DMi = M⇥ i(2⇡)4�4(pFN + pFDM � pIN � pIDM) . (28)

Here the plane waves are normalized by,

hp|p0
i = (2⇡)32p0�3(p0

� p) , (29)

with p0 being the relativistic energy of the particle.

7

Construction of the atomic plane wave

ΨEA describes the plane wave of the atom ! (  ∂xN ψEA(rest) = - Σ ∂xi ψEA(rest)  ) 

The energy eigenstate of the moving atom with a velocity v can be obtained
by the Galilei transformation !



“Atomic” Recoil Cross Section

For example, a contact spin-independent interaction between a Dirac dark matter and

the nucleon is given by,

L =
X

i=p,n

gi
M2

⇤
 ̄i i ̄DM DM , (30)

where M⇤ denotes a mass parameter and gp,n are dimensionless coupling constants. In this

case, the squared coherent invariant amplitude for the nucleus is given by,

|M|
2 = 16

m2
Nm

2
DM

M4
⇤

(gpZ + gn(A� Z))2 , (31)

where Z is the atomic number, A the mass number, and mDM the mass of the dark matter.

The corresponding cross section is given by,

�̄N '
1

16⇡

|M|
2

(mN +mDM)2
, (32)

'
1

⇡

µ2
N

M4
⇤
(gpZ + gn(A� Z))2 , (33)

where µN is the reduced mass,

µN =
mNmDM

mN +mDM
. (34)

Quantum mechanically, the above invariant matrix element can be reproduced by an

interaction potential,

Ĥ = Ĥ0 + V̂int , (35)

Ĥ0 =
p̂2
N

2mN
+

p̂2
DM

2mDM
+ V̂int , (36)

V̂int =
�M

4mNmDM
�3(xN � xDM) , (37)

in the coordinate representation. In fact, by taking the initial and the final states in the

coordinate representation,

 I(xN ,xDM) =
p
2mN eip

I
N ·xN ⇥

p
2mDM eip

I
DM ·xDM , (38)

 F (xN ,xDM) =
p
2mN eip

F
N ·xN ⇥

p
2mDM eip

F
DM ·xDM , (39)

we obtain

TFI = M⇥ i(2⇡)4�(EF
N + EF

DM � EI
N � EI

DM)�3(pF
N + pF

DM � pI
N � pI

DM) . (40)

Here we normalize the initial and the final states in conforming with the one in Eq. (29)

with the relativistic energies approximated by their masses.

8

Nuclear Scattering is reproduced by the point-like interaction potential in QM.

Contact interaction :

Invariant amplitude2 : 

Cross section : 

DM-Nuclear Scattering without Migdal Effect in a field theoretical treatment.
where Z is the atomic number, A the mass number, and mDM the mass of the dark matter.
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N
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ment in Eq. (28) is reproduced by an interaction potential,

Ĥ = Ĥ0 + V̂int , (35)

Ĥ0 =
p̂2
N

2mN
+

p̂2
DM

2mDM
, (36)

V̂int =
�M

4mNmDM
�3(xN � xDM) , (37)

with the initial and the final states

 I(xN ,xDM) =
p
2mN eip

I
N ·xN ⇥

p
2mDM eip

I
DM ·xDM , (38)

 F (xN ,xDM) =
p
2mN eip

F
N ·xN ⇥

p
2mDM eip

F
DM ·xDM . (39)

Here, we normalize the initial and the final wavefunctions in conforming with the one in

Eq. (29) with the relativistic energies approximated by their masses.

As another example, we may also consider a dark matter interaction with nucleons

through an exchange of a light scalar particle, �, with mass m�,

L = �

X

i=p,n

yi�  ̄i i � yDM�  ̄DM DM , (40)

where yp,n,DM are Yukawa coupling constants. The invariant amplitude of the isolated

nuclear scattering for each spin is given by

M(q2N) ' yDM (ypZ + yn(A� Z))
4mDMmN

m2
� � t

, (41)

t ' �q2N = �(pF
N � pI

N)
2 , (42)

in the non-relativistic limit. In the coordinate representation of quantum mechanics, the

invariant amplitude is reproduced by adding a potential term

V̂int(xN � xDM) = �

Z
d3q

(2⇡)3
eiq·(xN�xDM ) M(q2)

4mDMmN
, (43)

8

Wave Function : [Nuclear Plane Wave] x [DM Plane Wave] 



“Atomic” Recoil Cross Section
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→
(with the asymptotic Nucleus plane waves)

Born Approximation



Atomic Scattering via the contact DM-nuclear interaction term :

In passing, let us remind ourselves that the nuclear form factor becomes relevant for a

momentum transfer qA in the tens to hundreds MeV. By taking the form factor into account,

the di↵erential cross section with respect to the nuclear recoil energy in the laboratory frame

is given by2

d�N

dER
'

1

32⇡

mN

µ2
Nv

2
DM

|FA(q2A)|
2
|M|

2

(mN +mDM)2
, (42)

'
1

2

mN

µ2
Nv

2
DM

|FA(q
2
A)|

2�̄N . (43)

The final expression of Eq. (43) is valid only when M is independent of the momentum

transfer as in Eq. (32).

B. Invariant Amplitudes with Electron Cloud

Now, let us calculate the cross section of the nuclear recoil in the presence of the electron

cloud. For this purpose, we consider

Ĥtot = ĤA +
p̂2
DM

2mDM
+ V̂int , (44)

in the coordinate representation where ĤA is given in Eq. (3) and V̂int in Eq. (37). In subsec-

tion IIIA, we took the asymptotic states consist of the plane waves of the dark matter and

the isolated nucleus. To take into account the electron cloud, we replace the plane waves of

the nucleus with the plane waves of the atomic system constructed in the previous section.

As the atomic energy eigenstates are specified by (Eec,v), we take the initial and the

final states as

 I(xN , {x},xDM) =
p
2mN EI

A
(xN , {x})⇥

p
2mDMeip

I
DM ·xDM , (45)

 F (xN , {x},xDM) =
p
2mN EF

A
(xN , {x})⇥

p
2mDMeip

F
DM ·xDM . (46)

Hereafter, we take the initial velocity of the atomic system to be vanishing, vI = 0, since we

are interested in the atomic recoil in the laboratory frame. Accordingly, the total energies

of the initial and the final states are given by,

EI = EI
ec +

pI
DM

2

2mDM
, (47)

EF = EF
ec +

mA

2
vF

2 +
pF
DM

2

2mDM
, (48)

2 The elastic nuclear recoil energy is related to the scattering angle in the center of the mass frame via

dER =
µ2
N

mA
v2DM ⇥ d cos ✓CM . (41)
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tion IIIA, we took the asymptotic states consist of the plane waves of the dark matter and

the isolated nucleus. To take into account the electron cloud, we replace the plane waves of

the nucleus with the plane waves of the atomic system constructed in the previous section.

As the atomic energy eigenstates are specified by (Eec,v), we take the initial and the

final states as

 I(xN , {x},xDM) =
p
2mN EI

A
(xN , {x})⇥

p
2mDMeip

I
DM ·xDM , (45)

 F (xN , {x},xDM) =
p
2mN EF

A
(xN , {x})⇥

p
2mDMeip

F
DM ·xDM . (46)

Hereafter, we take the initial velocity of the atomic system to be vanishing, vI = 0, since we

are interested in the atomic recoil in the laboratory frame. Accordingly, the total energies

of the initial and the final states are given by,

EI = EI
ec +

pI
DM

2

2mDM
, (47)

EF = EF
ec +

mA

2
vF

2 +
pF
DM

2

2mDM
, (48)

2 The elastic nuclear recoil energy is related to the scattering angle in the center of the mass frame via

dER =
µ2
N

mA
v2DM ⇥ d cos ✓CM . (41)
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For example, a contact spin-independent interaction between a Dirac dark matter and

the nucleon is given by,

L =
X

i=p,n

gi
M2

⇤
 ̄i i ̄DM DM , (30)

where M⇤ denotes a mass parameter and gp,n are dimensionless coupling constants. In this

case, the squared coherent invariant amplitude for the nucleus is given by,

|M|
2 = 16

m2
Nm

2
DM

M4
⇤

(gpZ + gn(A� Z))2 , (31)

where Z is the atomic number, A the mass number, and mDM the mass of the dark matter.

The corresponding cross section is given by,

�̄N '
1

16⇡

|M|
2

(mN +mDM)2
, (32)

'
1

⇡

µ2
N

M4
⇤
(gpZ + gn(A� Z))2 , (33)

where µN is the reduced mass,

µN =
mNmDM

mN +mDM
. (34)

Quantum mechanically, the above invariant matrix element can be reproduced by an

interaction potential,

Ĥ = Ĥ0 + V̂int , (35)

Ĥ0 =
p̂2
N

2mN
+

p̂2
DM

2mDM
+ V̂int , (36)

V̂int =
�M

4mNmDM
�3(xN � xDM) , (37)

in the coordinate representation. In fact, by taking the initial and the final states in the

coordinate representation,

 I(xN ,xDM) =
p
2mN eip

I
N ·xN ⇥

p
2mDM eip

I
DM ·xDM , (38)

 F (xN ,xDM) =
p
2mN eip

F
N ·xN ⇥

p
2mDM eip

F
DM ·xDM , (39)

we obtain

TFI = M⇥ i(2⇡)4�(EF
N + EF

DM � EI
N � EI

DM)�3(pF
N + pF

DM � pI
N � pI

DM) . (40)

Here we normalize the initial and the final states in conforming with the one in Eq. (29)

with the relativistic energies approximated by their masses.
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Initial:
Final:

(Atomic plane wave)

We assume that initial sate atom is at rest : pIA = 0

In passing, let us remind ourselves that the nuclear form factor becomes relevant for a

momentum transfer qA in the tens to hundreds MeV. By taking the form factor into account,

the di↵erential cross section with respect to the nuclear recoil energy in the laboratory frame

is given by2
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'
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2
DM

|FA(q
2
A)|

2�̄N . (43)

The final expression of Eq. (43) is valid only when M is independent of the momentum

transfer as in Eq. (32).

B. Invariant Amplitudes with Electron Cloud

Now, let us calculate the cross section of the nuclear recoil in the presence of the electron

cloud. For this purpose, we consider

Ĥtot = ĤA +
p̂2
DM

2mDM
+ V̂int , (44)

in the coordinate representation where ĤA is given in Eq. (3) and V̂int in Eq. (37). In subsec-

tion IIIA, we took the asymptotic states consist of the plane waves of the dark matter and

the isolated nucleus. To take into account the electron cloud, we replace the plane waves of

the nucleus with the plane waves of the atomic system constructed in the previous section.

As the atomic energy eigenstates are specified by (Eec,v), we take the initial and the

final states as

 I(xN , {x},xDM) =
p
2mN EI

A
(xN , {x})⇥

p
2mDMeip

I
DM ·xDM , (45)

 F (xN , {x},xDM) =
p
2mN EF

A
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p
2mDMeip

F
DM ·xDM . (46)

Hereafter, we take the initial velocity of the atomic system to be vanishing, vI = 0, since we

are interested in the atomic recoil in the laboratory frame. Accordingly, the total energies

of the initial and the final states are given by,

EI = EI
ec +

pI
DM

2

2mDM
, (47)

EF = EF
ec +

mA

2
vF

2 +
pF
DM

2

2mDM
, (48)

2 The elastic nuclear recoil energy is related to the scattering angle in the center of the mass frame via

dER =
µ2
N

mA
v2DM ⇥ d cos ✓CM . (41)
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Initial:

Final:

“Atomic” Recoil Cross Section

( The normalization is to conform with  < p’ | p > = (2E)1/2 (2π)3/2 δ3(p’-p) )



where EI,F
ec are the energy eigenvalues of the initial and the final electron clouds in the rest

frame, respectively. By using the energy eigenfunctions in Eq. (23), the T -matrix of this

process is given by,

TFI = M⇥ i(2⇡)�(EF � EI)

Z
d3xNd

3xDM

Y

i

d3xi �
3(xN � xDM)

⇥�⇤
EF

ec
({x� xN})e

�i
P

i qe·xie�ipF
N ·xN�EI

ec
({x� xN})e

�i(pF
DM�pI

DM )·xDM , (49)

= M⇥ i(2⇡)4�(EF � EI)�
3(mAvF + pF

DM � pI
DM)

⇥

Z Y

i

d3xi �
⇤
EF

ec
({x})e�i

P
i qe·xi�EI

ec
({x}) . (50)

In the second equality, we shifted the integration variable xi by xN .

As a result, we obtain the matrix element

TFI ' M⇥ ZFI(qe)⇥ i(2⇡)4�4(pF � pI) , (51)

where

�4(pF � pI) = � (EF � EI)⇥ �3(mAvF + pF
DM � pI

DM) , (52)

ZFI(qe) =

Z Y

i

d3xi �
⇤
EF

ec
({x})e�i

P
i qe·xi�EI

ec
({x}) , (53)

qe = mevF , (54)

for vI = 0. The term proportional to M denotes the nuclear recoil and the factor ZFI(qe)

denotes the transition of the electron cloud. It should be emphasized that our approach

treats the nucleus and the electron cloud coherently, which enables us to derive the invariant

amplitude with manifest energy-momentum conservation.3

C. Phase Space Integration

By noting the normalizations in Eqs. (23), (29), (see also (A1)), the di↵erential cross

section is given by,4

d� '

X

EF
ec

d3pF
A

(2⇡)32pFA
0

d3pF
DM

(2⇡)32pFDM
0

|M|
2
⇥ |ZFI(qe)|2

4
p
(pIA · pIDM)2 �m2

Am
2
DM

⇥(2⇡)4�4(pFA + pFDM � pIA � pIDM) , (55)

3 The Fermi’s golden rule is justified by taking the timescale much loner than (EF
ec �EI

ec)
�1, which is also

much longer than the timescale of the Migdal e↵ect, i.e. the Bohr radius divided by the speed of light.
4 The factor |ZFI |

2 is missing in the cross section in [14] although the energy-momentum conservation are

taken into account correctly.
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(correct energy momentum 
conservation)

Migdal factor !

By taking the asymptotic states consist of the atomic plane waves,
the Migdal factor appears automatically.
The total energy momentum conservation is manifest !

“Atomic” Recoil Cross Section

Atomic Scattering via the contact DM-nuclear interaction term :

In passing, let us remind ourselves that the nuclear form factor becomes relevant for a

momentum transfer qA in the tens to hundreds MeV. By taking the form factor into account,

the di↵erential cross section with respect to the nuclear recoil energy in the laboratory frame

is given by2

d�N

dER
'

1

32⇡

mN

µ2
Nv

2
DM

|FA(q2A)|
2
|M|

2

(mN +mDM)2
, (42)

'
1

2

mN

µ2
Nv

2
DM

|FA(q
2
A)|

2�̄N . (43)

The final expression of Eq. (43) is valid only when M is independent of the momentum

transfer as in Eq. (32).

B. Invariant Amplitudes with Electron Cloud

Now, let us calculate the cross section of the nuclear recoil in the presence of the electron

cloud. For this purpose, we consider

Ĥtot = ĤA +
p̂2
DM

2mDM
+ V̂int , (44)

in the coordinate representation where ĤA is given in Eq. (3) and V̂int in Eq. (37). In subsec-

tion IIIA, we took the asymptotic states consist of the plane waves of the dark matter and

the isolated nucleus. To take into account the electron cloud, we replace the plane waves of

the nucleus with the plane waves of the atomic system constructed in the previous section.

As the atomic energy eigenstates are specified by (Eec,v), we take the initial and the

final states as

 I(xN , {x},xDM) =
p
2mN EI

A
(xN , {x})⇥

p
2mDMeip

I
DM ·xDM , (45)

 F (xN , {x},xDM) =
p
2mN EF

A
(xN , {x})⇥

p
2mDMeip

F
DM ·xDM . (46)

Hereafter, we take the initial velocity of the atomic system to be vanishing, vI = 0, since we

are interested in the atomic recoil in the laboratory frame. Accordingly, the total energies

of the initial and the final states are given by,

EI = EI
ec +

pI
DM

2

2mDM
, (47)

EF = EF
ec +

mA

2
vF

2 +
pF
DM

2

2mDM
, (48)

2 The elastic nuclear recoil energy is related to the scattering angle in the center of the mass frame via

dER =
µ2
N

mA
v2DM ⇥ d cos ✓CM . (41)
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For example, a contact spin-independent interaction between a Dirac dark matter and

the nucleon is given by,

L =
X

i=p,n

gi
M2

⇤
 ̄i i ̄DM DM , (30)

where M⇤ denotes a mass parameter and gp,n are dimensionless coupling constants. In this

case, the squared coherent invariant amplitude for the nucleus is given by,

|M|
2 = 16

m2
Nm

2
DM

M4
⇤

(gpZ + gn(A� Z))2 , (31)

where Z is the atomic number, A the mass number, and mDM the mass of the dark matter.

The corresponding cross section is given by,

�̄N '
1

16⇡

|M|
2

(mN +mDM)2
, (32)

'
1

⇡

µ2
N

M4
⇤
(gpZ + gn(A� Z))2 , (33)

where µN is the reduced mass,

µN =
mNmDM

mN +mDM
. (34)

Quantum mechanically, the above invariant matrix element can be reproduced by an

interaction potential,

Ĥ = Ĥ0 + V̂int , (35)

Ĥ0 =
p̂2
N

2mN
+

p̂2
DM

2mDM
+ V̂int , (36)

V̂int =
�M

4mNmDM
�3(xN � xDM) , (37)

in the coordinate representation. In fact, by taking the initial and the final states in the

coordinate representation,

 I(xN ,xDM) =
p
2mN eip

I
N ·xN ⇥

p
2mDM eip

I
DM ·xDM , (38)

 F (xN ,xDM) =
p
2mN eip

F
N ·xN ⇥

p
2mDM eip

F
DM ·xDM , (39)

we obtain

TFI = M⇥ i(2⇡)4�(EF
N + EF

DM � EI
N � EI

DM)�3(pF
N + pF

DM � pI
N � pI

DM) . (40)

Here we normalize the initial and the final states in conforming with the one in Eq. (29)

with the relativistic energies approximated by their masses.
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After phase space integration (center of mass frame): 

The process is not elastic for EecF  ≠  EecI  !

where we have approximated by pIA
0
' pFA

0
' mN in the overall normalization since we

are interested in non-relativistic scattering. Here we define the physical mass of the atomic

system, mA by

mA = mA + Eec , (56)

in the atomic rest frame. By boosting mA, we obtain the four-momentum of the atomic

system in an arbitrary frame. For example, the final state four-momentum is given by,

pFA ' (pFA
0,mAvF ) , pFA

0
' mF

A +
1

2
mAv

2
F = mA + EF

ec +
1

2
mAv

2
F . (57)

For the phase space integration, it is useful to take the quantization axis of the angular

momentum along the direction of qe, with which the factor |ZFI(qe)|2 depends only on the

size of qe. In the center of the mass frame, the integration over pF
A can be performed trivially,

which leads to pF
DM = �pF

A = pF . The remaining delta function is also eliminated by the

integration over pF
DM , which leads to

d�

d cos ✓CM
'

X

EF
ec

1

32⇡

|pF |

(pIA
0 + pIDM

0)2|pI |
|M|

2
|ZFI(qe)|

2 . (58)

Here we performed the integration over the azimuthal angle in the center of the mass frame.

The initial momentum in the center of the mass frame pI is given by

pI
DM = �pI

A = pI ' µNv
I
DM . (59)

It should be noted that the scattering process is no longer elastic for EF
ec 6= EI

ec. Accordingly,

the final state momentum in the center of the mass frame becomes smaller than |pI |,

|pF |
2
' |pI |

2
� 2µN(E

F
ec � EI

ec) . (60)

To satisfy |pF | > 0, there is a threshold velocity,

v(th)DM =

s
2(EF

ec � EI
ec)

µN
, (61)

with which |pF | is rewritten by,

|pF | = µN

q
v2DM � v(th) 2DM . (62)
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Here we performed the integration over the azimuthal angle in the center of the mass frame.

The initial momentum in the center of the mass frame pI is given by

pI
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A = pI ' µNv
I
DM . (59)

It should be noted that the scattering process is no longer elastic for EF
ec 6= EI

ec. Accordingly,

the final state momentum in the center of the mass frame becomes smaller than |pI |,
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2
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2
� 2µN(E

F
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ec) . (60)

To satisfy |pF | > 0, there is a threshold velocity,

v(th)DM =

s
2(EF
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ec)

µN
, (61)

with which |pF | is rewritten by,

|pF | = µN

q
v2DM � v(th) 2DM . (62)
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“Atomic” Recoil Cross Section

In CM :

where EI,F
ec are the energy eigenvalues of the initial and the final electron clouds in the rest

frame, respectively. By using the energy eigenfunctions in Eq. (23), the T -matrix of this

process is given by,

TFI = M⇥ i(2⇡)�(EF � EI)

Z
d3xNd

3xDM

Y

i

d3xi �
3(xN � xDM)

⇥�⇤
EF

ec
({x� xN})e

�i
P

i qe·xie�ipF
N ·xN�EI

ec
({x� xN})e

�i(pF
DM�pI

DM )·xDM , (49)

= M⇥ i(2⇡)4�(EF � EI)�
3(mAvF + pF

DM � pI
DM)

⇥

Z Y

i

d3xi �
⇤
EF

ec
({x})e�i

P
i qe·xi�EI

ec
({x}) . (50)

In the second equality, we shifted the integration variable xi by xN .

As a result, we obtain the matrix element

TFI ' M⇥ ZFI(qe)⇥ i(2⇡)4�4(pF � pI) , (51)

where

�4(pF � pI) = � (EF � EI)⇥ �3(mAvF + pF
DM � pI

DM) , (52)

ZFI(qe) =

Z Y

i

d3xi �
⇤
EF

ec
({x})e�i

P
i qe·xi�EI

ec
({x}) , (53)

qe = mevF , (54)

for vI = 0. The term proportional to M denotes the nuclear recoil and the factor ZFI(qe)

denotes the transition of the electron cloud. It should be emphasized that our approach

treats the nucleus and the electron cloud coherently, which enables us to derive the invariant

amplitude with manifest energy-momentum conservation.3

C. Phase Space Integration

By noting the normalizations in Eqs. (23), (29), (see also (A1)), the di↵erential cross

section is given by,4

d� '

X

EF
ec

d3pF
A

(2⇡)32pFA
0

d3pF
DM

(2⇡)32pFDM
0

|M|
2
⇥ |ZFI(qe)|2

4
p
(pIA · pIDM)2 �m2

Am
2
DM

⇥(2⇡)4�4(pFA + pFDM � pIA � pIDM) , (55)

3 The Fermi’s golden rule is justified by taking the timescale much loner than (EF
ec �EI

ec)
�1, which is also

much longer than the timescale of the Migdal e↵ect, i.e. the Bohr radius divided by the speed of light.
4 The factor |ZFI |

2 is missing in the cross section in [14] although the energy-momentum conservation are

taken into account correctly.
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Here, we defined the physical mass of the atomic system, mA by

mA = mA + Eec . (60)

By boosting four momentum (mA, 0, 0, 0), we obtain the four-momentum of the atomic

system in an arbitrary frame. For example, the final state four-momentum is given by

pFA ' (pFA
0,mAvF ) , pFA

0
' mF

A +
1

2
mAv

2
F = mA + EF

ec +
1

2
mAv

2
F , (61)

in the laboratory frame.

When the magnetic quantum numbers of the electrons in the initial/final states are

averaged/summed, the factor |ZFI(qe)|2 depends only on the size of qe. In this case, the

di↵erential cross section is given by

d�

d cos ✓CM
'

X

EF
ec

1

32⇡

|pF |

(pIA
0 + pIDM

0)2|pI |
|FA(q

2
A)|

2
|M(q2A)|

2
|ZFI(qe)|

2 . (62)

Here, pI,F denotes the initial and the final state momenta in the center of the mass frame.

By using the dark matter velocity in the laboratory frame, vI
DM , the initial momentum

in the center of the mass frame, pI , is given by

pI
DM = �pI

A = pI ' µNv
I
DM . (63)

It should be noted that the scattering process is no longer elastic for EF
ec 6= EI

ec. Accordingly,

the final state momentum in the center of the mass frame becomes smaller than |pI |;

|pF |
2
' |pI |

2
� 2µN(E

F
ec � EI

ec) . (64)

To satisfy |pF | > 0, there is a threshold velocity,

v(th)DM =

s
2(EF

ec � EI
ec)

µN
, (65)

with which |pF | is rewritten by

|pF | = µN

q
v2DM � v(th) 2DM . (66)
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(CM frame)

B. Energy Eigenstates of a Moving Atom

Once we construct the energy eigenstates of an atomic system at rest, the energy eigen-

states of an atomic system moving with a velocity v can be immediately obtained by the

Galilei transformation,

 EA(xN , {x}) ' U(v) (rest)
EA

(xN , {x}) . (15)

Here the unitary operator is given by,

U(v) = exp

"
imNv · xN + ime

NeX

i=1

v · xi

#
. (16)

Under the Galilei transformation, the momentum operators are shifted by

U(v)†p̂NU(v) = p̂N +mNv , (17)

U(v)†p̂iU(v) = p̂i +mev , (18)

and hence, the Hamiltonian is transformed into

U(v)†ĤAU(v) = ĤA + v ·

 
p̂N +

NeX

i=1

p̂i

!
+

1

2
mAv

2 . (19)

Here we define the nominal mass of the atom by

mA = mN +Neme . (20)

By using Eqs. (13), (14), and (19), we find that the boosted wave function  EA satisfies,

ĤA EA(xN , {x}) '

✓
Eec +

1

2
mAv

2

◆
 EA(xN , {x}) . (21)

Therefore, the boosted wave function  EA provides the approximate energy eigenstate with

EA ' Eec +
1

2
mAv

2 . (22)

In summary, the eigenstate of the atomic system is approximated by

 EA(xN , {x}) ' eipN ·xN ei
PNe

i=1 qe·xi (rest)
EA

(xN , {x}) , (23)

pN = mNv , (24)

qe = mev , (25)

6

Migdal factorNuclear Form Factor



Numerical Transition Rate (by using Flexible Atomic Code)

TABLE II. The excitation probabilities into unoccupied states for a given initial state orbital (n, `).

Here P!n0`0 is defined by P!n0`0 ⌘ pdqe(n` ! n0`0). The probabilities not shown in this table are

forbidden or negligibly small.

Ar (qe = me ⇥ 10�3)

(n, `) P!3d P!4s P!4p P!4d P!5s P!5p En` [eV] 1
2⇡

R
dEe

dpc

dEe

1s – – 1.3⇥ 10�7 – – 4.3⇥ 10�8 3.2⇥ 103 7.2⇥ 10�5

2s – – 5.3⇥ 10�6 – – 1.8⇥ 10�6 3.0⇥ 102 4.1⇥ 10�4

2p 4.3⇥ 10�6 5.0⇥ 10�6 – 3.0⇥ 10�6 1.3⇥ 10�6 – 2.4⇥ 102 4.2⇥ 10�3

3s – – 5.3⇥ 10�7 – – 1.1⇥ 10�6 2.7⇥ 10 1.2⇥ 10�3

3p 7.9⇥ 10�3 8.5⇥ 10�3 – 4.0⇥ 10�3 1.2⇥ 10�3 – 1.3⇥ 10 7.4⇥ 10�2

(n, `) 3d 4s 4p 4d 5s 5p

En`[eV] 1.6 3.7 2.5 0.88 1.6 1.2

Xe (qe = me ⇥ 10�3)

(n, `) P!4f P!5d P!6s P!6p En` [eV] 1
2⇡

R
dEe

dpc

dEe

1s – – – 7.3⇥ 10�10 3.5⇥ 104 4.6⇥ 10�6

2s – – – 1.8⇥ 10�8 5.4⇥ 103 2.9⇥ 10�5

2p – 3.0⇥ 10�8 6.5⇥ 10�9 – 4.9⇥ 103 1.3⇥ 10�4

3s – – – 2.7⇥ 10�7 1.1⇥ 103 8.7⇥ 10�5

3p – 3.4⇥ 10�7 4.0⇥ 10�7 – 9.3⇥ 102 5.2⇥ 10�4

3d 2.3⇥ 10�9 – – 4.3⇥ 10�7 6.6⇥ 102 3.5⇥ 10�3

4s – – – 3.1⇥ 10�6 2.0⇥ 102 3.4⇥ 10�4

4p – 4.1⇥ 10�8 3.0⇥ 10�5 – 1.4⇥ 102 1.4⇥ 10�3

4d 7.0⇥ 10�7 – – 1.5⇥ 10�4 6.1⇥ 10 3.4⇥ 10�2

5s – – – 1.2⇥ 10�4 2.1⇥ 10 4.1⇥ 10�4

5p – 3.6⇥ 10�2 2.1⇥ 10�2 – 9.8 1.0⇥ 10�1

(n, `) 4f 5d 6s 6p

En`[eV] 0.85 1.6 3.3 2.2
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FIG. 3. The di↵erential ionization probabilities as a function of the emitted electron energy, Ee,

for isolated Ar, Xe, Ge, Na, and I. The contributions from di↵erent `’s are summed. We also

summed all the possible final states for a given n. The integrated probabilities are given in Tab. II.
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initial state

Ee spectrum is purely determined the structure of the electron clouds !
Ee spectrum is independent of the dark matter velocity vDM and mDM .

Rate is proportional to qe2

ionization probability ∝ q2
e

Excitation Ionization

(2)Transition is possible only for | Δℓ | = 1

In the dipole approximation 
(1) only one electron gets excited or ionized

B. Energy Eigenstates of a Moving Atom

Once we construct the energy eigenstates of an atomic system at rest, the energy eigen-
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Here we define the nominal mass of the atom by
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By using Eqs. (13), (14), and (19), we find that the boosted wave function  EA satisfies,
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✓
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Therefore, the boosted wave function  EA provides the approximate energy eigenstate with
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In summary, the eigenstate of the atomic system is approximated by
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i=1 qe·xi (rest)
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pN = mNv , (24)

qe = mev , (25)
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Electron Orbits

1s 2s 2p 3s 3p 3d 4s 4p 4d 4f 5s 5p

Na 2 2 6 1 0 0 0 0 0 0 0 0

Ar 2 2 6 2 6 0 0 0 0 0 0 0

Ge 2 2 6 2 6 10 2 2 0 0 0 0

I 2 2 6 2 6 10 2 6 10 0 2 5

Xe 2 2 6 2 6 10 2 6 10 0 2 6

TABLE I. The number of electrons in a shell for the ground state configurations.

C. Ionization Spectrum at the Leading Order

By combining Eqs. (75) and (88), we find that the ionized electron spectrum from an

initial orbital ok associated is given by

dR

dER dEe dvDM
'

dR0

dER dvDM
⇥

1

2⇡

X

n,`

d

dEe
pcqe(n` ! Ee) , (91)

dR0

dER dvDM
'

1

2

⇢DM

mDM

1

µ2
N

�̃N(qA)⇥
f̃(vDM)

vDM
. (92)

Here,

ER '
q2A
2mA

, qe '
me

mA
qA . (93)

It should be noted that the atomic recoil energy, ER, and the electron transition energy,

�E, are correlated through the energy-momentum conservation;

ER =
µ2
N

2mN
v2DM

0

@
 
1�

s

1�
2�E

µNv2DM

!2

+ 2(1� cos ✓CM)

s

1�
2�E

µNv2DM

1

A , (94)

where

�E = Ee + En` , (95)

En` =
1

2

X



�`,|+1/2|�1/2En . (96)

From this expression, we find the minimum dark matter velocity for given ER and �E,

vDM,min '
mNER + µN�E

µN

p
2mNER

. (97)

In Fig. 1, we show the minimum velocity as a function of ER for isolated Ar and Xe atoms.

We also show the kinematically allowed region of ER and �E for Ar and Xe atoms for

vDM = 10�3 in Fig. 2.
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Implication on Dark Matter Direct Detection Experiments

We cannot use our results based on the isolated atoms for the 
valence electrons.

For the inner electrons, the effects from the environments are not significant. 



For heavier dark matter, the atom recoil energy exceeds the threshold  energy.
                                                ER < MA2 x vDM2   = O(10-100)keV

��� = ��� ���
σ � = ��-�����

AR
n=5
n=4
n=3

��-� ��-� ��� ��� ���
��-��

��-�

��-�

��-�

��-�

��-�

��-�

����/�����

��
/�
� �

��
[�
/�
�/
��
�/
��
�

] ��� = ���� ���
σ � = ��-�����

AR
n=5
n=4
n=3

��-� ��-� ��� ��� ���
��-��

��-�

��-�

��-�

��-�

��-�

��-�

����/�����

��
/�
� �

��
[�
/�
�/
��
�/
��
�
]

The  Migdal effect is submerged below the conventional nuclear recoil spectrum.

Edet  = (0.1-0.2) ER  + EEM EEM = Ee + Edex ~ EecF - Eec I

Implication on Dark Matter Direct Detection Experiments

Migdal Effect single-phase Liquid Xe detectors 

[ Single phase experiment  = scintillation energy : 
   Only 10-20 % of ER is measured ]
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FIG. 4. The di↵erential event rates expected at the single-phase experiments with the liquid Xe

target. The black lines show the conventional atomic recoil spectrum with the electron cloud

una↵ected, which are almost the same as the ones in the conventional analysis. The green, blue,

and pink lines show the rates with the ionization from n = 3, 4, and 5, respectively. Here, we do

not take the energy resolution into account. Since we apply the estimations for the isolated atoms,

the ionization spectrum from the valence electrons, i.e. n = 5, are not reliable.

The figures show that the electronic energy from the ionizations can be larger than the

maximum value of the (electron equivalent) nuclear recoil energy for a rather light dark

matter. As discussed in the previous section, the shape of the energy spectrum of the

electronic injections is not sensitive to the incident dark matter velocity as long as they are

kinematically allowed. The nuclear recoil energy, on the other hand, depends on the dark
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Migdal Effect single-phase Liquid Xe detectors

Edet  = (0.1-0.2) ER  + EEM
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Implication on Dark Matter Direct Detection Experiments

A few events with Edet = O(1)keV are  expected for 105 kg days !

The atom recoil energy is lower than threshold  ER < MDM2 /MA  x vDM2   = O(1)keV

EEM = Ee + Edex ~ EecF - Eec I

[ Single phase experiment  = scintillation energy : 
   Only 10-20 % of ER is measured ]
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FIG. 4. The di↵erential event rates expected at the single-phase experiments with the liquid Xe

target. The black lines show the conventional atomic recoil spectrum with the electron cloud

una↵ected, which are almost the same as the ones in the conventional analysis. The green, blue,

and pink lines show the rates with the ionization from n = 3, 4, and 5, respectively. Here, we do

not take the energy resolution into account. Since we apply the estimations for the isolated atoms,

the ionization spectrum from the valence electrons, i.e. n = 5, are not reliable.

The figures show that the electronic energy from the ionizations can be larger than the

maximum value of the (electron equivalent) nuclear recoil energy for a rather light dark

matter. As discussed in the previous section, the shape of the energy spectrum of the

electronic injections is not sensitive to the incident dark matter velocity as long as they are

kinematically allowed. The nuclear recoil energy, on the other hand, depends on the dark
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Implication on Dark Matter Direct Detection Experiments

Migdal Effect single-phase Liquid Xe detectors (Extreme Example)

EEM = Ee + Edex ~ EecF - Eec I

[ Single phase experiment  = scintillation energy : 
   Only 10-20 % of ER is measured ]



SUMMARY
In the conventional analysis of dark matter direct detection experiments through 
the nuclear scattering, the whole atom is assumed to be recoiled.

In reality, the electrons take some time to catch up with the recoiled nucleus
leading to electronic energy injection in addition to the atomic recoil → Migdal Effect 

We reformulated the Migdal effect, where we can manifestly see the energy-
momentum conservation and the probability conservation. 

The emitted electronic energy can be in the keV range even for a rather light dark 
matter (MDM < 10GeV) where the atomic recoil energy is lower than energy 
threshold, i.e. O(1)keV.

Migdal Effects has advantages to look for small “q” with a large cross section 
dark matter →  it provides new signals to look for a rather light DM !

Experimental tests of the Migdal Effect itself is important !!!

Improvement of Theoretical Prediction (~ O(10)% rate estimation )

—> Miuchi san’s talk tomorrow .  

See 2208.12222 (Cox, Dolan, McCabe, Quiney) for Beyond the dipole Approximation.

(For DM searches by Xenon, the dipole approximation looks OK.)



Back up



Experimental Confirmation of Migdal Effect Itself ?

Migdal effects have been observed experimentally in radioactive decays

α-decays (X-ray emission at the de-excitation to the K,L,M-hole made by Migdal effect)

“K-shell electron shake-off accompanying alpha decay”, 

M.S. Rapaport, F. Asaro and I. Pearlman, PRC 11, 1740-1745 (1975)

“L- and M-shell electron shake-off accompanying alpha decay”, 

 M.S. Rapaport, F. Asaro and I. Pearlman, PRC 11, 1746-1754 (1975)

“Investigation of the “Jolting” of electron shells of oriented molecules containing P32”, 

E. E. Berlovich et al.,  Sov. Phys. JETP, Vol. 21 , 675 (1965)

“Internal Bremsstrahlung and Ionization Accompanying Beta Decay”,
F. Boehm and C. S. Wu,  Phys. Rev. 93, Number 3, 518 (1954)

“First Measurement of Pure Electron Shakeoff in the β Decay of Trapped 6He+Ions”, 

C. Couratin et al. , PRL 108, 243201 (2012)

β-decays (Distinguishing 6He+ → 6Li2+ (NO Migdal effect) and 6Li3+ (with Migdal effect) )

β+-decays 
"Electron Shakeoff following the β+ decay of Trapped 19Ne+ and 35Ar+ trapped ions”, 
 X. Fabian et al., PRA, 97, 023402 (2018)

So far, Migdal electrons have not been measured directly !

It is difficult to confirm the Migdal effect in neutral process. 



Why is LXe transparent to their own scintillation light? 

Xe Xe
R

Xe Xe
R

*

R

V(R)

Excitation

Scintillation

γ175nm →

How is the Nucleus Scattering detected ?



The dark matter event rate per unit detector mass

D. Atomic Recoil Spectrum

By paying attention to the inelasticity caused by the electron excitation, the atomic recoil

spectrum in the laboratory frame is obtained as follows.5 We define the atomic recoil energy

ER as

ER = pFA
0
�mF

A '
1

2
mAv

2
F , (63)

in the laboratory frame. Using the relations of the momentum transfer;

q2A ' (|pF |� |pI |)
2 + 2|pI ||pF |(1� cos ✓CM) , (64)

' �(EF
ec � EI

ec)
2 + 2mAER ' 2mAER , (65)

we obtain

ER '
q2A
2mA

'
|pF |

2 + |pI |
2
� 2|pI ||pF | cos ✓CM

2mA
. (66)

Thus the di↵erential cross section with respect to the atomic recoil energy is given by,

d�

dER
'

X

EF
ec

1

32⇡

mA

µ2
Nv

2
DM

|FA(q2A)|
2
|M|

2

(mN +mDM)2
|ZFI(qe)|

2 , (67)

'

X

EF
ec

1

2

mA

µ2
Nv

2
DM

|FA(q
2
A)|

2�̄N |ZFI(qe)|
2 , (68)

where

qe = mevF '
me

mA
qA . (69)

The final expression of Eq. (68) is again valid only when M is independent of the momentum

transfer.

Finally, the dark matter event rate for a unit detector mass is given by,
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Here ⇢DM denotes the local dark matter density6 and f̃(vDM) is the spherical velocity dis-

tribution normalized as7
Z

f̃DM(vDM) dvDM = 1 . (72)

5 Similar analyses have been done in the context of “inelastic excitation of nucleus” in [19, 20].
6 For the Burkert profile [7], it is estimated to be ⇢DM ' 0.487+0.075

�0.088 GeV/cm3.
7 For astrophysical uncertainties of the direct detection experiments (see e.g. [21, 22]).
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where we have approximated by pIA
0
' pFA

0
' mN in the overall normalization since we

are interested in non-relativistic scattering. Here we define the physical mass of the atomic

system, mA by

mA = mA + Eec , (56)

in the atomic rest frame. By boosting mA, we obtain the four-momentum of the atomic

system in an arbitrary frame. For example, the final state four-momentum is given by,

pFA ' (pFA
0,mAvF ) , pFA

0
' mF

A +
1

2
mAv

2
F = mA + EF

ec +
1

2
mAv

2
F . (57)

For the phase space integration, it is useful to take the quantization axis of the angular

momentum along the direction of qe, with which the factor |ZFI(qe)|2 depends only on the

size of qe. In the center of the mass frame, the integration over pF
A can be performed trivially,

which leads to pF
DM = �pF

A = pF . The remaining delta function is also eliminated by the

integration over pF
DM , which leads to

d�

d cos ✓CM
'

X

EF
ec

1

32⇡

|pF |

(pIA
0 + pIDM

0)2|pI |
|M|

2
|ZFI(qe)|

2 . (58)

Here we performed the integration over the azimuthal angle in the center of the mass frame.

The initial momentum in the center of the mass frame pI is given by

pI
DM = �pI

A = pI ' µNv
I
DM . (59)

It should be noted that the scattering process is no longer elastic for EF
ec 6= EI

ec. Accordingly,

the final state momentum in the center of the mass frame becomes smaller than |pI |,

|pF |
2
' |pI |

2
� 2µN(E

F
ec � EI

ec) . (60)

To satisfy |pF | > 0, there is a threshold velocity,

v(th)DM =

s
2(EF

ec � EI
ec)

µN
, (61)

with which |pF | is rewritten by,

|pF | = µN

q
v2DM � v(th) 2DM . (62)
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EecF = EecI : nuclear recoil = atomic recoil (conventional dark matter event)

EecF ≠ EecI : nuclear recoil = atomic recoil + electric energy injection !

Migdal Effect converts some of the recoil energy into electronic energy !

Migdal factor

DM velocity distribution 

Nuclear Form Factor

(CM frame)



Single Electron Approximation

IV. MIGDAL EFFECT IN SINGLE ELECTRON APPROXIMATION

A. Single Electron Wave Function

In our numerical calculation, we use the electron wave function �Eec obtained by the

Dirac-Hartree-Fock method, where the relativistic e↵ects on the electron cloud are taken into

account (see e.g. [23] for review). The non-relativistic treatment discussed in the previous

section can be easily extended to the relativistic case, where we can ignore the di↵erence

between the Galilei transformation and the Lorents boost for v ⌧ 1.

In the Dirac-Hartree-Fock approximation, an electron state is given by a Slater deter-

minant made up of one orbital per each electron in an averaged central potential around a

nucleus.8 That is, the energy eigenstates in Eq. (23) are approximated by

 EA(xN , {x}) ' eipN ·xN
X

�2SNe

sgn(�)
p
Ne!

eiqe·x1�↵1
o�(1)

(x1 � xN)e
iqe·x2�↵2

o�(2)
(x2 � xN)

⇥ · · · eiqe·xNe�↵Ne
o�(Ne)

(xNe � xN) , (73)

where SNe denotes the permutation of Ne. Here we explicitly show the indices of the Dirac

spinor by ↵i = 1 · · · 4, which are encapsulated in {x} on the left-hand side.

The electron cloud consists of the Ne orbitals,9

ec = {o1, o2, · · · oNe} , (74)

where each orbital is specified by energy E, relativistic angular momentum , and magnetic

quantum number m,10

oi = (Ei,i,mi) . (75)

For a bounded electron, i.e. Ei < 0, the state is classified by the principle quantum number,

ni, while the spectrum is continuous for an unbounded electron, i.e. for Ei > 0.

The one electron Dirac orbital �↵
o (xi) is given by using the spherical spinors ⌦m as

�o(x) =
1

r

0

@ PE(r)⌦m(✓,')

iQE(r)⌦�m(✓,')

1

A , (76)

8 The following treatment can be extended to the multi-configuration Dirac-Hartree-Fock method straight-

forwardly which provides a better approximation of the electron configuration.
9 The Slater determinant in Eq. (73) is reducible in terms of the total angular momentum of the atom.

10 The value  determines both the total angular momentum j and the orbital angular momentum ` via

 = ⌥(j + 1/2) for j = `± 1/2.

13

For numerical estimation, we use the Dirac-Hartree-Fock approximation to 
obtain the electron wave functions .
                    Electron wave function ~ Slater determinant of single electrons

Accordingly, the “atomic plane wave” is also given by a Slater determinant  
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in the rest frame of the atomic system. Here r denotes the distance between the electron

and the nucleus. The one-electron states are normalized such that

4X

↵=1

Z
d3x�o(x)

↵⇤�↵
o0(x) =

8
><

>:

�nn0�0�mm0 (bounded)

(2⇡)�(E � E 0)�0�mm0 (unbounded)
. (77)

In the Dirac-Hartree-Fock approximation, the electron cloud transition factor obtained

in the previous section is rewritten by

ZFI(qe) =
X

�2SNe

sgn(�)
NeY

i=1

4X

↵i=1

Z
d3xi �

↵i⇤
oF�(i)

(xi)e
�iqe·xi�↵i

oIi
(xi) . (78)

Thus, the transition amplitude is given by the product of the transition amplitudes between

the electron orbitals.

B. Single Electron Excitation/Ionization

For the atomic recoil with the momentum transfer smaller than the hundreds MeV range,

the factor |qe ·xi| is expected to be small on an atomic scale.11 At the leading order of qe, only

one electron can be excited/ionized, and hence, the initial and the final state configurations

are given by,

ceI = {o1, · · · , ok, · · · oNe} , (79)

ceF = {o1, · · · , o
0
k, · · · oNe} , (80)

where

EF
ec � EI

ec ' E 0
k � Ek . (81)

Hereafter, we assume that the initial electron cloud stays in the ground state, where all the

electrons are bounded by the Coulomb potential of the nucleus. The final electron state, o0k,

can be either a bounded orbital or an unbounded orbital.

To the leading order of qe, the electron cloud transition amplitude is reduced to

ZFI(qe) = zqe(E
0
k,

0
k,m

0
k|Ek,k,mk) = �i

4X

↵k=1

Z
d3xk �

↵k⇤
o0k

(xk)(qe · xk)�
↵k
ok
(xk) . (82)

11 For vF ' 10�3, for example, qe ' 0.5 keV and hence |qe · xi| ⌧ 1 even for a Bohr radius.
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In this approximation, the Migdal factor is given by the transition late between 
the single electron orbitals 

αi = 1- 4 : Dirac Spinor index 



qe = me qA/mA  < 10-3 me (qA/100MeV)                (qA = μA vDM )
→  qe xe << qe x ( Bhor Radius )  < 1

For a DM-nucleus scattering,

At the leading order of qe , only one electron can be excited/ionized.
For a given set of the initial orbitals, only one orbital can be different 
in the final state.
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For the atomic recoil with the momentum transfer smaller than the hundreds MeV range,

the factor |qe ·xi| is expected to be small on an atomic scale.11 At the leading order of qe, only

one electron can be excited/ionized, and hence, the initial and the final state configurations

are given by,

ceI = {o1, · · · , ok, · · · oNe} , (79)

ceF = {o1, · · · , o
0
k, · · · oNe} , (80)

where

EF
ec � EI

ec ' E 0
k � Ek . (81)

Hereafter, we assume that the initial electron cloud stays in the ground state, where all the

electrons are bounded by the Coulomb potential of the nucleus. The final electron state, o0k,

can be either a bounded orbital or an unbounded orbital.

To the leading order of qe, the electron cloud transition amplitude is reduced to

ZFI(qe) = zqe(E
0
k,

0
k,m

0
k|Ek,k,mk) = �i

4X

↵k=1

Z
d3xk �

↵k⇤
o0k

(xk)(qe · xk)�
↵k
ok
(xk) . (82)

11 For vF ' 10�3, for example, qe ' 0.5 keV and hence |qe · xi| ⌧ 1 even for a Bohr radius.
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At this order, transitions take place when the orbital angular momentums of o0k and ok di↵er

only by one, i.e. |`0k�`k| = 1. By further approximating that the electron orbitals experience

an e↵ective central potential, the transition amplitude can be further reduced to,12

zqe(E
0
k,

0
k,m

0
k|Ek,k,mk) = �iqe

Z
dr r ⇥

⇥
PE0

k
(r)PEk

(r) +QE0
k
(r)QEk

(r)
⇤

⇥h0m0
| cos ✓|mi , (83)

h0m0
| cos ✓|mi =

Z
d⌦⌦†

0,m0(✓,') cos ✓⌦†
,m(✓,') . (84)

In the following discussion, we only require an accuracy of several tens of percent for the

electron binding energies. For this accuracy, the bound state energies for the same principal

numbers and the same orbital angular momentums are not distinguishable, and hence, we

label the bound states by (n, `). Then, the transition rates at the leading order can be

expressed by

X

F

|ZFI |
2 = |ZII |

2 +
X

n,`,n0,`0

pdqe(n` ! n0`0) +
X

n,`

Z
dEe

2⇡

d

dEe
pcqe(n` ! Ee) . (85)

Here, |ZII |
2
' 1 + O(q2e hri

2) is the probability for the electrons una↵ected by the nuclear

recoil (see also the appendixB). The excitation and the ionization probabilities, pd,cqe , are

defined by

pdqe(n` ! n0`0) =
!max
`0 � !n0,`0

!max
`0

!n,`

!max
`

X

,0,m,m0

�`,|+1/2|�1/2�`0,|0+1/2|�1/2

⇥ |zqe(En00 ,0,m0
|En,,m)|2 , (86)

pcqe(n` ! Ee) =
!n,`

!max
`

X

,0,m,m0

�`,|+1/2|�1/2 |zqe(Ee,
0,m0

|En,,m)|2 , (87)

where En is the binding energy for the bounded electron labeled by (n,), !n` is the

occupation number of the subshell (see Tab. I), and !max
` = 2(2`+1). The final state orbital

angular momentum, i.e. `0 = `± 1, is summed implicitly in Eq. (87).

12 Here h�0m0
| cos ✓|� mi = h0m0

| cos ✓|mi.
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ionization ∝ q2
eexcitation ∝ q2

e

excitation/ionization rates can be obtained via the wave functions 
of the single electron orbitals

elastic

Single Electron Approximation

~1

ec “ to1, ¨ ¨ ¨ , ok, ¨ ¨ ¨ u Ñ ec1 “ to1, ¨ ¨ ¨ , o1
k, ¨ ¨ ¨ u

<latexit sha1_base64="SHtYzlxAK6COhYDV6OiBaM0FKqs="></latexit>

(dipole approximation)

For a recent discussion on the validity of the dipole approximation 
—> See 2208.12222 (Cox, Dolan, McCabe, Quiney) 



Beyond the Dipole Approximation

See. 2208.12222 (Cox, Dolan, McCabe, Quiney) 
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FIG. 11. The upper part of each panel compares our results (coloured lines) for the di↵erential single ionisation probability,
dpv/dEe, with the equivalent results from Ibe et al. [10] (dashed black lines). Following Ref. [10], we label the states with
the non-relativistic quantum numbers and, for clarity, we have separated the s and p, d states for germanium and xenon into
separate panels. The lower part of each panel shows the di↵erence, [1/(2⇡)dpce/dEe] / [dpv/dEe]� 1, expressed as a percentage.

degree of deviation is expected since Ref. [10] employs
a relativistic self-consistent mean-field approach with a
local central potential, while we use the canonical Dirac-
Hartree-Fock method, which includes the full non-local
exchange potential.

Appendix C: Neutron cross-sections

This appendix gives the neutron–nucleus cross-sections
used in this work. The numerical values of the cross-
sections in table I are from the ENDF/B-VIII.0 li-
brary [89]. The values on the left (right) correspond to

nominal neutron energies from a D-D (D-T) neutron gen-
erator. We have listed cross-sections for elastic scatter-
ing, inelastic scattering, (n, 2n) reactions and radiative
capture processes as all of these processes can give rise
to an electron and nuclear recoil track with a common
vertex: the signal for which the MIGDAL experiment is
searching [48].

Figure 12 shows the combined di↵erential cross-section
for all signal-inducing processes as a function of the nu-
clear recoil energy. The left and right panels show the
spectra expected from an incoming neutron with energy
2.47MeV and 14.7MeV, respectively, and the curves ex-
tend to the end-point recoil energies. The spectra were

The dipole approximation seems to reproduce the analysis beyond the dipole 
approximation better than the 20% accuracy for the Xenon case (n<4, Ee > 1keV)

The analysis beyond the dipole approximation becomes more important 
for higher the higher recoil energy.
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FIG. 5. Upper panel: Di↵erence between the exclusive single
ionisation probabilities and the dipole approximation for the
1s and valence subshells of neon and xenon. Lower panel:
Di↵erence between the semi-inclusive ionisation probability
and the dipole approximation for various atoms. The open
circles denote where v = ↵.

mation to the semi-inclusive probability when v ⌧ ↵Zn.
For helium, this corresponds to ER ⌧ 0.4MeV, which
is entirely consistent with our numerical results in fig. 5.
For heavy atoms, such as xenon, we see that the dipole
approximation should be su�ciently accurate for most
cases of practical interest; however, this is clearly not
the case for lighter atoms, where it significantly under-
estimates the semi-inclusive probability for large nuclear
recoil energies.

IV. MIGDAL PHENOMENOLOGY

In this section we present two applications of our cal-
culations. The first is to sub-GeV DM direct detection,
where the nuclear recoil velocity is small, v ⌧ ↵, and
single ionisation is the dominant process. The second
is to neutron scattering, where we assume the neutrons
originate from D-D or D-T fusion generators and the nu-
clear recoil velocity can satisfy v ' ↵, so that multiple
ionisation dominates.

A. Dark matter

Consider DM that interacts with the nucleus via the
usual spin-independent operator. The di↵erential rate
(per unit target mass) to produce a nuclear recoil with
energy ER and an ionisation electron with energy Ee fac-
torises and can be cast in the form

d2R

dERdEe
=

⇢�A2�n

2m�µ2
�n

|FN|
2
X

n

dpv(n ! Ee)

dEe
g�(vmin) ,

(9)
where the local DM density is ⇢� ' 0.3GeV cm�3, m� is
the DM mass, A the atomic mass number of the tar-
get, µ�n the DM-nucleon reduced mass, �n the spin-
independent DM-nucleon scattering cross-section at zero-
momentum transfer, and for FN we use the Helm nuclear
form factor [82]. The probability to ionise an electron
with initial quantum numbers (n,) into a final-state
with kinetic energy Ee is pv(n ! Ee). Finally, the
standard integral over the DM velocity distribution is

g�(vmin) =

Z 1

vmin

f�(~v� + ~v�)

|~v�|
d3~v� , (10)

where f�(~v�) is taken to be a truncated Maxwell-
Boltzmann distribution and we follow the recommenda-
tions in Ref. [83] and set v0 =

p
2�v = 238 km s�1 and

vescape = 544 km s�1. We neglect the time-dependence of
~v�, the motion of the Earth with respect to the galac-
tic rest frame [84]. The minimum velocity of DM that
can inelastically scatter to produce a nuclear recoil with
energy ER and an electronic excitation of energy EEM is

vmin =

s
mNER

2µ2
+

EEM
p
2mNER

, (11)

where mN is the nucleus mass and EEM = Ee + En,
with En the (positive) binding energy of the electron
before emission. Note that since vmin depends on (n,)
through En, g�(vmin) should be included in the sum
in eq. (9). For multiple ionisation, EEM is modified to
include the sum of the binding energies of each of the
electrons.
In fig. 6 we show the di↵erential DM scattering rate

as a function of the ionisation electron energy, Ee, for
helium, argon and xenon. Results for He, relevant for
the CYGNUS and NEWS-G experiments, have not been
presented in the literature before. We have assumed a
DM mass of 1GeV and a DM-nucleon scattering cross-
section of 10�40 cm2. The dashed line shows the rate of
double transitions in helium, including both double ion-
isation and ionisation with excitation, where the second
electron is soft (E2 < 0.1 keV). As expected, the double
transition rate is highly suppressed due to the low nuclear
recoil velocity (v/↵ . 0.1) induced by the scattering DM.
The dipole approximation is expected to be valid in

the kinematic regime relevant for DM scattering. In
the bottom sub-panel of fig. 6 we compare (for Ar and

(In the Xenon case, the large discrepancies below O(10)eV  are probably from 
our usage of the approximated electron potential.)



1s 2s 2p 3s 3p 3d 4s 4p 4d 4f 5s 5p

Na 2 2 6 1 0 0 0 0 0 0 0 0

Ar 2 2 6 2 6 0 0 0 0 0 0 0

Ge 2 2 6 2 6 10 2 2 0 0 0 0

I 2 2 6 2 6 10 2 6 10 0 2 5

Xe 2 2 6 2 6 10 2 6 10 0 2 6

TABLE I. The number of electrons in a shell for the ground state configurations.

C. Ionization Spectrum at the Leading Order

By combining Eqs. (71) and (85), we find that the continuous electron spectrum at the

ionization from an orbital ok associated with the atomic recoil is given by,

dR

dER dEe dvDM
'

dR0

dER dvDM
⇥

1

2⇡

X

n,`

d

dEe
pcqe(n` ! Ee) , (88)

dR0

dER dvDM
'

1

2

⇢DM

mDM

1

µ2
N

|FA(q
2
A)|

2�̄N ⇥
f̃(vDM)

vDM
, (89)

where

ER '
q2A
2mA

, qe '
me

mA
qA . (90)

It should be noted that the atomic recoil energy, ER, and the electron transition energy,

�E, are correlated through the energy-momentum conservation;

ER =
µ2
N

2mN
v2DM

0

@
 
1�

s

1�
2�E

µNv2DM

!2

+ 2(1� cos ✓CM)

s

1�
2�E

µNv2DM

1

A , (91)

where

�E = Ee + En` , (92)

En` =
1

2

X



�`,|+1/2|�1/2En . (93)

Accordingly, the minimum dark matter velocity for an atomic recoil with non-vanishing

electron ionization is given by

vDM,min '
mNER + µN�E

µN

p
2mNER

. (94)

16

(Ee : free electron kinetic energy)

When the core-hole (the vacancy in the inner shell) is created by ionization,  
the states are de-excited immediately in O(10)fs.

FIG. 1. The minimum dark matter velocity as a function of the atomic recoil energy ER for given

�E and mDM for Ar and Xe.

In Fig. 1, we show the minimum velocity as a function of the atomic recoil energy ER for

given �E and mDM . Here we take isolated Ar and Xe atoms as examples. The phase space

of ER is given by the intersection between an envelope and the horizontal line for a given

vDM , �E, and mDM .

It should be also noted that there is a kinematical upper limit on the electron transition

energy �E for a given speed of dark matter, which is set by Eq. (61),

�EMAX =
1

2
µNv

2
DM . (95)

In Fig. 2, we show �EMAX as a function of vDM . The figure shows that �E in the keV

range is kinematically allowed for vDM
>
⇠ 10�3. It is also notable that, for �E = �EMAX,

the atomic recoil energy is given by,

ER =
µ2
N

2mN
v2DM =

µN

mN
⇥�EMAX . (96)

Thus the corresponding atomic recoil energy is smaller than �EMAX, which plays an impor-

tant role on the dark matter detections as discussed in the later section.

In addition to the electron emission due to the ionization, the core-hole created by the

ionization from an inner orbital also releases the electronic energy by the subsequent de-

excitation.13 The typical timescales of the de-excitation processes are of O(10) fs, and hence,

the energy of the electron emission and the de-excitation are measured simultaneously;

EEM = Ee + Edex , (97)

13 The de-excitation proceeds through the X-ray transition, the Auger transition, or the Coster-Kronig

transition (see [24, 25] for review, see also [26]). For a core-hole in n > 1 states the Coster-Kroning

transition dominates the de-excitation process.
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The electron energy and the de-excitation energy 
are measured simultaneously.

New J.Phys. 15 (2013) 083040

FIG. 2. The kinematical upper limits on the electron transition energy, �E, as a function of the

speed of dark matter for a given mDM . The gray shaded region corresponds to the velocity larger

than the Galactic escape velocity, vesc = 544km/s. (For the Burkert profile, the escape velocity is

estimated to be vesc = 576 ± 124 km/s [7].) It should be noted that vDM can be larger than vesc

due to the local circular motion of the Sun and the Earth.

where Edex is the energy released at the de-excitation.

Accordingly, the electromagnetic energy spectrum is given by,

dR

dER dEEM dvDM
'

dR0

dER dvDM
⇥

1

2⇡

X

n,`

d

dEe
pcqe(n` ! (EEM � En`)) . (98)

Hereafter, we simply assume that the ionization energy is de-excited completely and hence,

EEM = �E.14 It should be kept in mind, however, that EEM is not the energy of a single

electron/photon but the collection of the energies of the electrons and photons emitted at

the de-excitation and the ionization. Thus, the detector responses to EEM might be di↵erent

from those to a single electron/photon with the same energy, although we do not take such

e↵ects into account in the following discussion.

Similarly, the excited atoms also lead to electronic energy release by de-excitation. By

assuming the complete de-excitation again, we obtain the electromagnetic energy spectrum

as

dR

dER dEEM dvDM
'

dR0

dER dvDM
⇥

X

n,n0,`,`0

pdqe(n` ! n0`0)⇥ �(EEM ��En`!n0`0) . (99)

Here �En`!n0`0 is given by

�En`!n0`0 =
1

2

X



�`,|+1/2|�1/2En �
1

2

X

0

�`0,|0+1/2|�1/2En00 . (100)

14 If the atom is completely isolated, the ionization and the subsequent Auger and Coster-Kronig transitions

leave ionized atoms. In the medium, on the contrary, ionized atoms are also de-excited eventually.

18

FIG. 2. The kinematical upper limits on the electron transition energy, �E, as a function of the

speed of dark matter for a given mDM . The gray shaded region corresponds to the velocity larger

than the Galactic escape velocity, vesc = 544km/s. (For the Burkert profile, the escape velocity is

estimated to be vesc = 576 ± 124 km/s [7].) It should be noted that vDM can be larger than vesc

due to the local circular motion of the Sun and the Earth.

where Edex is the energy released at the de-excitation.
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Hereafter, we simply assume that the ionization energy is de-excited completely and hence,

EEM = �E.14 It should be kept in mind, however, that EEM is not the energy of a single

electron/photon but the collection of the energies of the electrons and photons emitted at

the de-excitation and the ionization. Thus, the detector responses to EEM might be di↵erent

from those to a single electron/photon with the same energy, although we do not take such

e↵ects into account in the following discussion.

Similarly, the excited atoms also lead to electronic energy release by de-excitation. By

assuming the complete de-excitation again, we obtain the electromagnetic energy spectrum

as
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14 If the atom is completely isolated, the ionization and the subsequent Auger and Coster-Kronig transitions

leave ionized atoms. In the medium, on the contrary, ionized atoms are also de-excited eventually.
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Ionization = free electron + ion with a core hole

Differential Ionization Event Rate for an Isolated Atom
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Differential Event Rate with respect to the measurable electric energy

where we have approximated by pIA
0
' pFA

0
' mN in the overall normalization since we

are interested in non-relativistic scattering. Here we define the physical mass of the atomic

system, mA by

mA = mA + Eec , (56)

in the atomic rest frame. By boosting mA, we obtain the four-momentum of the atomic

system in an arbitrary frame. For example, the final state four-momentum is given by,

pFA ' (pFA
0,mAvF ) , pFA

0
' mF

A +
1

2
mAv

2
F = mA + EF

ec +
1

2
mAv

2
F . (57)

For the phase space integration, it is useful to take the quantization axis of the angular

momentum along the direction of qe, with which the factor |ZFI(qe)|2 depends only on the

size of qe. In the center of the mass frame, the integration over pF
A can be performed trivially,

which leads to pF
DM = �pF

A = pF . The remaining delta function is also eliminated by the

integration over pF
DM , which leads to

d�

d cos ✓CM
'

X

EF
ec

1

32⇡

|pF |

(pIA
0 + pIDM

0)2|pI |
|M|

2
|ZFI(qe)|

2 . (58)

Here we performed the integration over the azimuthal angle in the center of the mass frame.

The initial momentum in the center of the mass frame pI is given by

pI
DM = �pI

A = pI ' µNv
I
DM . (59)

It should be noted that the scattering process is no longer elastic for EF
ec 6= EI

ec. Accordingly,

the final state momentum in the center of the mass frame becomes smaller than |pI |,

|pF |
2
' |pI |

2
� 2µN(E

F
ec � EI

ec) . (60)

To satisfy |pF | > 0, there is a threshold velocity,

v(th)DM =

s
2(EF

ec � EI
ec)

µN
, (61)

with which |pF | is rewritten by,

|pF | = µN

q
v2DM � v(th) 2DM . (62)
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FIG. 1. The minimum dark matter velocity as a function of the atomic recoil energy ER for given

�E and mDM for Ar and Xe.

In Fig. 1, we show the minimum velocity as a function of the atomic recoil energy ER for

given �E and mDM . Here we take isolated Ar and Xe atoms as examples. The phase space

of ER is given by the intersection between an envelope and the horizontal line for a given

vDM , �E, and mDM .

It should be also noted that there is a kinematical upper limit on the electron transition

energy �E for a given speed of dark matter, which is set by Eq. (61),

�EMAX =
1

2
µNv

2
DM . (95)

In Fig. 2, we show �EMAX as a function of vDM . The figure shows that �E in the keV

range is kinematically allowed for vDM
>
⇠ 10�3. It is also notable that, for �E = �EMAX,

the atomic recoil energy is given by,

ER =
µ2
N

2mN
v2DM =

µN

mN
⇥�EMAX . (96)

Thus the corresponding atomic recoil energy is smaller than �EMAX, which plays an impor-

tant role on the dark matter detections as discussed in the later section.

In addition to the electron emission due to the ionization, the core-hole created by the

ionization from an inner orbital also releases the electronic energy by the subsequent de-

excitation.13 The typical timescales of the de-excitation processes are of O(10) fs, and hence,

the energy of the electron emission and the de-excitation are measured simultaneously;

EEM = Ee + Edex , (97)

13 The de-excitation proceeds through the X-ray transition, the Auger transition, or the Coster-Kronig

transition (see [24, 25] for review, see also [26]). For a core-hole in n > 1 states the Coster-Kroning

transition dominates the de-excitation process.
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Kinematical Constraint 
FIG. 1. The minimum dark matter velocity as a function of the atomic recoil energy ER for given

�E and mDM for Ar and Xe.
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FIG. 2. Kinematical constraints on the plane of (ER,�E) for given mDM and vDM for Ar and Xe

atoms. The regions below the lines are kinematically allowed.

It should be also noted that there is a kinematical upper limit on the electron transition

energy, �E, for a given speed of dark matter, which is set by Eq. (65),

�EMAX =
1

2
µNv

2
DM . (98)

In Fig. 3, we show �EMAX as a function of vDM . The figure shows that �E in the keV

range is kinematically allowed for vDM
>
⇠ 10�3. It is also notable that, for �E = �EMAX,

the atomic recoil energy is given by

ER =
µ2
N

2mN
v2DM =

µN

mN
⇥�EMAX . (99)

Thus the corresponding atomic recoil energy is smaller than �EMAX, which plays an impor-

tant role on the dark matter detections as discussed in the later section.
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ER, max (ER, ΔE) 

D. Atomic Recoil Spectrum

By paying attention to the inelasticity caused by the electron excitation, the atomic recoil

spectrum in the laboratory frame is obtained as follows.5 We define the atomic recoil energy

ER as

ER = pFA
0
�mF

A '
1

2
mAv

2
F , (63)

in the laboratory frame. Using the relations of the momentum transfer;

q2A ' (|pF |� |pI |)
2 + 2|pI ||pF |(1� cos ✓CM) , (64)

' �(EF
ec � EI

ec)
2 + 2mAER ' 2mAER , (65)

we obtain

ER '
q2A
2mA

'
|pF |

2 + |pI |
2
� 2|pI ||pF | cos ✓CM

2mA
. (66)

Thus the di↵erential cross section with respect to the atomic recoil energy is given by,

d�

dER
'

X

EF
ec

1

32⇡

mA

µ2
Nv

2
DM

|FA(q2A)|
2
|M|

2

(mN +mDM)2
|ZFI(qe)|

2 , (67)

'

X

EF
ec

1

2

mA

µ2
Nv

2
DM

|FA(q
2
A)|

2�̄N |ZFI(qe)|
2 , (68)

where

qe = mevF '
me

mA
qA . (69)

The final expression of Eq. (68) is again valid only when M is independent of the momentum

transfer.

Finally, the dark matter event rate for a unit detector mass is given by,

dR

dERdvDM
'

1

mA

⇢DM

mDM

d�

dER
vDM f̃DM(vDM) , (70)

'

X

EF
ec

1

2

⇢DM

mDM

1

µ2
N

|FA(q
2
A)|

2�̄N ⇥ |ZFI(qe)|
2
⇥

f̃(vDM)

vDM
. (71)

Here ⇢DM denotes the local dark matter density6 and f̃(vDM) is the spherical velocity dis-

tribution normalized as7
Z

f̃DM(vDM) dvDM = 1 . (72)

5 Similar analyses have been done in the context of “inelastic excitation of nucleus” in [19, 20].
6 For the Burkert profile [7], it is estimated to be ⇢DM ' 0.487+0.075

�0.088 GeV/cm3.
7 For astrophysical uncertainties of the direct detection experiments (see e.g. [21, 22]).
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where we have approximated by pIA
0
' pFA

0
' mN in the overall normalization since we

are interested in non-relativistic scattering. Here we define the physical mass of the atomic

system, mA by

mA = mA + Eec , (56)

in the atomic rest frame. By boosting mA, we obtain the four-momentum of the atomic

system in an arbitrary frame. For example, the final state four-momentum is given by,

pFA ' (pFA
0,mAvF ) , pFA

0
' mF

A +
1

2
mAv

2
F = mA + EF

ec +
1

2
mAv

2
F . (57)

For the phase space integration, it is useful to take the quantization axis of the angular

momentum along the direction of qe, with which the factor |ZFI(qe)|2 depends only on the

size of qe. In the center of the mass frame, the integration over pF
A can be performed trivially,

which leads to pF
DM = �pF

A = pF . The remaining delta function is also eliminated by the

integration over pF
DM , which leads to

d�

d cos ✓CM
'

X

EF
ec

1

32⇡

|pF |

(pIA
0 + pIDM

0)2|pI |
|M|

2
|ZFI(qe)|

2 . (58)

Here we performed the integration over the azimuthal angle in the center of the mass frame.

The initial momentum in the center of the mass frame pI is given by

pI
DM = �pI

A = pI ' µNv
I
DM . (59)

It should be noted that the scattering process is no longer elastic for EF
ec 6= EI

ec. Accordingly,

the final state momentum in the center of the mass frame becomes smaller than |pI |,

|pF |
2
' |pI |

2
� 2µN(E

F
ec � EI

ec) . (60)

To satisfy |pF | > 0, there is a threshold velocity,

v(th)DM =

s
2(EF

ec � EI
ec)

µN
, (61)

with which |pF | is rewritten by,

|pF | = µN

q
v2DM � v(th) 2DM . (62)
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FIG. 1. The minimum dark matter velocity as a function of the atomic recoil energy ER for given

�E and mDM for Ar and Xe.

In Fig. 1, we show the minimum velocity as a function of the atomic recoil energy ER for

given �E and mDM . Here we take isolated Ar and Xe atoms as examples. The phase space

of ER is given by the intersection between an envelope and the horizontal line for a given

vDM , �E, and mDM .

It should be also noted that there is a kinematical upper limit on the electron transition

energy �E for a given speed of dark matter, which is set by Eq. (61),

�EMAX =
1

2
µNv

2
DM . (95)

In Fig. 2, we show �EMAX as a function of vDM . The figure shows that �E in the keV

range is kinematically allowed for vDM
>
⇠ 10�3. It is also notable that, for �E = �EMAX,

the atomic recoil energy is given by,

ER =
µ2
N

2mN
v2DM =

µN

mN
⇥�EMAX . (96)

Thus the corresponding atomic recoil energy is smaller than �EMAX, which plays an impor-

tant role on the dark matter detections as discussed in the later section.

In addition to the electron emission due to the ionization, the core-hole created by the

ionization from an inner orbital also releases the electronic energy by the subsequent de-

excitation.13 The typical timescales of the de-excitation processes are of O(10) fs, and hence,

the energy of the electron emission and the de-excitation are measured simultaneously;

EEM = Ee + Edex , (97)

13 The de-excitation proceeds through the X-ray transition, the Auger transition, or the Coster-Kronig

transition (see [24, 25] for review, see also [26]). For a core-hole in n > 1 states the Coster-Kroning

transition dominates the de-excitation process.
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ΔE = EecF - Eec I > 0 : |pF| < |pI| in CM

dotted outer circle : |pI|
dotted inner circle : |pF|

For ΔE > 0 : |pN| > 0
 |pN| MIN ~  ΔE

pI

pF qA

The maximum ΔE

 ΔE = 0

 ΔE = 0

ΔEMAX

<latexit sha1_base64="A7+dGghdtzVLPXYCI4JKUyWpuxk="></latexit>

�Emax =
p

2mAERvDM � mA

µN
ER
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The wave function of the valence (the outermost) electrons are affected 
by the electrons of the neighbor atoms.

In the detector, the atoms are not isolated .
e.g.) Typical separation in the liquid Xe ground state ~ 2 x 10-8 cm

3meV

Xe

2x10-8 cm ~ 4 x Bohr radius

Xe
R

R

van der Waals force 
= deformation of the electron cloud

V(R)

Ionization energies are slightly reduced by about O(1)eV
→ the transition rates from the valence electrons for the isolated 
atom are not reliable

→ the transition rate from the valence 
electrons for the isolated atom is not 
reliable

Implication on Dark Matter Direct Detection Experiments

potential of the valence quark

~ 2x10-8 cm 



The timescale of the atomic scattering should be much smaller than

(a) (b)

N N

1

DM DM The nucleus recoil is propagated to the electrons 
via electro magnetic interaction.

The time scale of the Migdal effect 
TMigdal   ~ Bohr Radius / speed of light
            ~ 10-19 sec

The time scale is consistent with the atomic plane wave  treatment.

Tscattering ~ 10-14cm/vDM  << 10-8 cm / vDM ~ 10-15 sec

The timescale of the Migdal effect

In the following, we apply the Migdal effects on the isolated atom to 
the dark matter detection for the non-valence electrons.

Implication on Dark Matter Direct Detection Experiments

~ Bohr Radius

Xe Xe Xe Xe Xe
v


