

Accurate gamma-ray spectra for heavy (electro-)weakly interacting dark matter annihilation **DMNet International Symposium "Direct and Indirect Detection of** Dark Matter" — Heidelberg 2022

Martin Vollmann — 14.9.2022

Gamma rays from DM annihilation e.g. in the Milky Way

Martin Vollmann — γ -rays from heavy DM

energy

2

γ s from DM ann. **Promising avenue**

• *Bumpy* endpoint (spectral line)

\Rightarrow smoking gun

- Theoretically and experimentally challenging, though ...
 - Focus on the theoretical (particle-physics) challenges

energy

3

Gamma rays from heavy DM annihilation Theoretical challenges

γs from DM ann. Theoretical challenges

Continuum

Fixed-order + Parton showers + Non-relativistic effective field theory (NREFT)

• Endpoint

NREFT and soft-collinear effective theory (SCET)

Martin Vollmann — γ -rays from heavy DM

energy

5

DM₂Spec **Resum and plot your spectrum!**

Open source python-based tool to compute and plot fully resummed γ -ray spectra from wino/higgsino ann.

- Floating wino/higgsino masses for e.g. parameter scans
- Variable-width Gaussian Instrument-Response Function (IRF) built in
 - Convolution with generic IRFs straightforward
- $\mathcal{O}(1\%)$ accuracy

💭 jupyter	example Last Checkpoint: Yesterday at 15:33 (autosaved)
File Edit	View Insert Cell Kernel Help Trusted Python 3 (ipykerne
B + % 4	$\blacksquare \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare $
	Example notebook DMγSpec
	Photon spectra $\chi \chi \rightarrow \gamma + X$ for wino and Higgsino dark matter
	Load the top-level functions
In [1]:	from resummation import diffxsection, cumulxsection, binnedxsection, zerobin
	Example use of functions
	Differential cross-section: $\frac{d(\sigma v)}{dx} \left[10^{-26} \text{cm}^3/\text{s} \right] \text{in} x = \frac{E_{\gamma}}{m_{\chi}} \in [0, 1]$
	Function arguments in order are x [], mass [TeV], model (either 'wino' or 'higgsino'), and Sommerfeld factor where the latter table can be chosen from a tables in paper/documentation.
In []:	diffxsection(1-0.08,2,'wino','LO -4')
In []:	diffxsection(1-0.08.2.'higgsino'.'LO -3 dm 355 dmN 20')

See https://dmyspec.hepforge.org/

Gamma rays from heavy DM annihilation Literature

Mainly...

Matching resummed endpoint and continuum γ-ray spectra from darkmatter annihilation Beneke, Vollmann, Urban — 2022 arXiv:2203.01692

Resummed photon spectrum from dark matter annihilation for intermediate and narrow energy resolution Beneke, Broggio, Hasner, Vollmann, Urban — 2019 (~100 pages) arXiv:1903.08702

Precise yield of high-energy photons from Higgsino dark matter annihilation Beneke, Hasner, Vollmann, Urban — 2019 arXiv:1912.02034

But also,

Energetic y-rays from TeV scale dark matter annihilation resummed Beneke, Broggio, Hasner, Vollmann — 2018 arXiv:1805.07367

NLO electroweak potentials for minimal dark matter and beyond Urban — 2021 arXiv:2108.07285

> Wino potential and Sommerfeld effect at NLO Beneke, Szafron, Urban — 2019 arXiv:1909.04584

> > EBERHARD KARLS UNIVERSITÄT TÜBINGEN

7

Phenomenology

Sudakov logs

Results

Sommerfeld enhancement

Conclusions

Phenomenology

Sudakov logs

Results

Sommerfeld enhancement

Conclusions

Dark Matter exists

Electroweak interactions exist

A 50yrs-old story of wimps **Coming to an end with Cherenkov telescopes?**

- Freeze-out mechanism / WIMP miracle
 - Electroweak sector ⇔ dark matter

- Pure "wino"/ "higgsino" mainimal BSM content
- **Cherenkov Telescopes** can search for TeV-scale spectral lines
 - Sommerfeld effect: enhancements by several orders of magnitude
 - Besides the Sommerfeld effect, large EW effects at the endpoint (Sudakov double) logarithms) have to be understood and resummed
- Crucial to have a reliable computation of the full continuum+line spectrum

Martin Vollmann — γ -rays from heavy DM

Supersymmetry

Phenomenology

Sudakov logs

Results

Sommerfeld enhancement

Conclusions

Phenomenology

Sudakov logs

Results

Sommerfeld enhancement

Conclusions

Phenomenology

• "Count" the number of rays subtended in $\Delta \Omega$

$$\Phi_{\gamma} = \int_{\Delta\Omega} d\Omega I_{\gamma}, \quad I_{\gamma} = \int_{1.0.5.} ds \, \frac{1}{4\pi} S_{\gamma}$$

- Rate sensitive to the (unknown) number density of DM particles
 - DM mass density ρ (if uncertain) is the available quantity

$$S_{\gamma} = \frac{1}{2} n_{\chi}^2 \frac{\mathrm{d}\langle \sigma v \rangle}{\mathrm{d}E_{\gamma}} = \frac{1}{2 m_{\chi}^2} \rho_{\mathrm{DM}}^2 \frac{\mathrm{d}\langle \sigma v \rangle}{\mathrm{d}E_{\gamma}}$$

Dark Matter annihilation Astrophysics factored out

• Putting things together:

$$\Phi_{\gamma} = \frac{1}{8\pi m_{\chi}^2} \times J \times \frac{\mathrm{d}\langle \sigma v \rangle}{\mathrm{d}E_{\gamma}},$$

where the "J" factor is defined as

$$J = \int d\Omega \int_{l.o.s.} ds \,\rho_{\rm DM}^2$$

 γ-ray flux via dark-matter annihilation

$$\Phi_{\gamma} = \frac{1}{8\pi m_{\chi}^2} \times J \times \frac{\mathrm{d}\langle \sigma v \rangle}{\mathrm{d}E_{\gamma}}$$

Focus on a particle physics problem!

- Simple kinematics (The dark matter is cold → non relativistic)
 - Lab frame \simeq CoM frame

$$\sqrt{s} = 2 m_{\chi} + \mathcal{O}(m_{\chi} v^2)$$

Dark Matter annihilation Endpoint spectrum

• Consider the fully-exclusive process $\chi_0 \chi_0 \to \gamma \gamma$

$$E_{\gamma} = m_{\chi}$$

 Back-to-back monochromatic TeV-scale photons

Quasi-monochromatic spectral line

Phenomenology

Sudakov logs

Results

Sommerfeld enhancement

Conclusions

Phenomenology

Sudakov logs

Results

Sommerfeld enhancement

Conclusions

Sommerfeld enhancement

Sommerfeld enhancement

Unitarity and higher-order corrections in neutralino dark matter annihilation into two photons

Junji Hisano and Sh. Matsumoto ICRR, University of Tokyo, Kashiwa 277-8582, Japan

Mihoko M. Nojiri YITP, Kyoto University, Kyoto 606-8502, Japan (Received 16 December 2002; revised manuscript received 16 January 2003; published 23 April 2003)

Sommerfeld enhancement

PHYSICAL REVIEW D 67, 075014 (2003)

Sommerfeld enhancement The wave function of a two-wimp system

Sommerfeld enhancement The wave function of a two-wimp system

 $\left(-\frac{1}{m_{\gamma}}\frac{\mathrm{d}^2}{\mathrm{d}x^2} + V(x) + \frac{i}{2}\sigma\right)$ Unitarity-violating term \rightarrow $\sigma_r + \sigma_t$ $\sigma_a = |\psi|$

Resummed cross section

Martin Vollmann — γ -rays from heavy DM

$$\sigma_a^{(0)}v\delta(x)\bigg)\,\psi(x) = E\psi(x)$$

$$j_{+} = j_{-} + |\psi(0)|^2 \sigma_a v$$

$$+ \sigma_a = 1$$

$$|{}^{\mathbf{0}}(\mathbf{0})|^{\mathbf{2}}\sigma_{a}^{(0)}$$

Sommerfeld factor X QFT cross section ("long" range NR physics) X (short range physics) (short range physics)

Sommerfeld enhancement **Concrete example: pure wino**

SM + Majorana SU(2) triplet $\delta \mathcal{L}_{\text{Wino}} = \frac{1}{2} \bar{\chi} (i \gamma^{\mu} D_{\mu} - m_{\chi}) \chi$

Q=0 *Majorana* DM Q=1 *Dirac* chargino

•
$$m_{\chi^+} - m_{\chi^0} \simeq 164 \mathrm{MeV}$$

- DM stable through a \mathbb{Z}_2 symmetry
- Suitable WIMP for $m_{\gamma^0} \simeq 3 {
 m TeV}$
- Super-partner of the SU(2) gauge bosons in SUSY

EBERHARD KARLS UNIVERSITÄT TÜBINGEN

Sommerfeld enhancement Concrete example: pure wino

$$V(r) = \begin{pmatrix} 0 & -\sqrt{2}\alpha_2 \frac{\mathrm{e}^{-m_W r}}{r} \\ -\sqrt{2}\alpha_2 \frac{\mathrm{e}^{-m_W r}}{r} & -\frac{\alpha}{r} - \alpha_2 c_W^2 \frac{\mathrm{e}^{-m_Z r}}{r} \end{pmatrix}$$

$$S_{IJ} \frac{d(\sigma v)_{IJ}}{dE_{\gamma}}$$
Sommerfeld matrix
$$I, J = (\chi 0 \chi 0) \text{ or } (\chi + \chi -)$$

Sommerfeld enhancement Concrete example: pure wino

 $\frac{\mathrm{d}\sigma v}{\mathrm{d}E_{\gamma}} = 2\sum_{I,J} S_{IJ} \frac{\mathrm{d}(\sigma v)_{IJ}}{\mathrm{d}E_{\gamma}}$

Sommerfeld enhancement "Explosive" Dark Matter annihilation

 $\sigma v \big|_{2\gamma + \gamma Z} = 2 \times S_{(+-)(+-)} \times (\sigma v)_{(+-)(+-)}^{\text{tree}}$

Sommerfeld enhancement Relationship with bound states

Sommerfeld enhancement Bound states? ... Not quite

Sommerfeld enhancement Bound states? ... Not quite

Sommerfeld enhancement NLO potential — Beneke, Szafron, Urban (arXiv:1909.04584)

Martin Vollmann — γ -rays from heavy DM

Sommerfeld enhancement NLO potential — Beneke, Szafron, Urban (arXiv:2009.00640)

Motivation

Phenomenology

Sudakov logs

Results

Sommerfeld enhancement

Conclusions

Motivation

Phenomenology

Sudakov logs

Results

Sommerfeld enhancement

Conclusions

Sudakov logs

Sudakov double logs

Soft collinear effective field theory (SCET) Method of regions

$$k_3 = m_{\chi}(1, \hat{n}) \equiv m_{\chi} n$$

$$= \int \frac{\mathrm{d}^{D}q}{(2\pi)^{D}} \frac{1}{(q+k_{3}-p_{1})^{2}-m_{\chi}^{2}} \frac{1}{(q+k_{3})^{2}-m_{W}^{2}} \frac{1}{q^{2}-m_{W}^{2}} \frac{1}{(q-k_{4})^{2}-m_{\chi}^{2}} \frac{1}{(q-k_{4})^{2}-m_{W}^{2}} \frac{1}{(q-k$$

$$k_4 = m_{\chi}(1, -\hat{n}) \equiv m_{\chi}\bar{n}$$

SCET for indirect DM detection Method of regions

$$I_{\text{ex.}} = \int \frac{\mathrm{d}^{D}q}{(2\pi)^{D}} \frac{1}{(q+k_{3}-p_{1})^{2}-m_{\chi}^{2}} \frac{1}{(q+k_{3})^{2}-m_{W}^{2}} \frac{1}{q^{2}-m_{W}^{2}} \frac{1}{(q-k_{4})^{2}-m_{W}^{2}}$$

$$\left(\begin{array}{c} \text{Light-cone} \\ \text{coordinates} \end{array} q = q_{c}n + q_{\bar{c}}\bar{n} + q_{\perp} \longrightarrow (q_{c}, q_{\bar{c}}, q_{\perp}) \end{array} \right)$$

Expand propagators in according to 4 different momentum scalings

$$q_h \sim m_{\chi}(1, 1, 1)$$
 $q_s \sim m_W(1, 1, 1)$

$$q_c \sim \left(\frac{m_W^2}{m_\chi}, m_\chi, m_W\right) \qquad q_{\bar{c}} \sim \left(m_\chi, \frac{m_W^2}{m_\chi}, m_W\right)$$

For example:
$$I_h = \int \frac{\mathrm{d}^D q}{(2\pi)^D} \frac{1}{(q+k_3-p_1)^2 - m_\chi^2} \frac{1}{(q+k_3)^2} \frac{1}{q^2} \frac{1}{(q-k_4)^2}$$

SCET for indirect DM detection Method of regions

Let the *magic* happen:

Martin Vollmann — γ -rays from heavy DM

+ power corrections

SCET for indirect DM detection Method of regions

Interpret each expansion as a Feynman diagram of the SCET

Factorization (after including all diagrams)

Wilson coefficients only depend on the hard scale m_{γ}

only depend on the soft

scale m_W

Soft functions

Jet functions

only depends on the typical jet scale

SCET for indirect DM detection Concretely ...

$$\mathcal{L}_{\text{NRDM}\times\text{SCET}} = \mathcal{L}_{\text{NRDM}} + \mathcal{L}_{\text{SCET}} + \frac{1}{2m_{\chi}} \sum_{i=1}^{2} \int \mathrm{d}s \mathrm{d}t \ \hat{C}_{i}(t, s)$$

Two-dimensional operator basis (for the $\chi\chi \rightarrow \gamma + X$ process) $\mathcal{O}_{1} = \chi_{\mathrm{NR}}^{c\dagger} \chi_{\mathrm{NR}} \varepsilon_{\perp}^{\mu\nu} \mathcal{A}_{\perp c, \mu}^{C}(sn_{+}) \mathcal{A}_{\perp \bar{c}, \nu}^{C}(tn_{-})$ $\mathcal{O}_{2} = \chi_{\mathrm{NR}}^{c\dagger} \{T^{C}, T^{D}\} \chi_{\mathrm{NR}} \varepsilon_{\perp}^{\mu\nu} \mathcal{A}_{\perp c, \mu}^{C}(sn_{+}) \mathcal{A}_{\perp \bar{c}, \nu}^{D}(tn_{-})$

Martin Vollmann — γ -rays from heavy DM

Fully resummed result **NREFT** × SCET for indirect dark-matter detection

$$\frac{\mathrm{d}}{\mathrm{d}E_{\gamma}}[\sigma v] = |\psi(0)|^2 \times |C|^2(\mu)$$

SOLVE:

1. a suitable Schrödinger equation

2. renormalization group equations (in μ and ν) for every term in the factorization formula

 $J(\mu, \nu) \times Z_{\gamma}(\mu, \nu) \times J(\mu, \nu) \otimes W(\mu, \nu)$

Prescription for resummation

 $\Gamma_{IJ}^{\text{higgsino}}(E_{\gamma}) = \frac{1}{(\sqrt{2})^{n_{id}}} \frac{1}{4} \frac{2}{\pi m_{\chi}} \sum_{i,i} C_{i}(\mu) C_{j}^{*}(\mu) \times Z_{\gamma}^{WY}(\mu)$

 $\Gamma_{IJ}^{\text{wino}}(E_{\gamma}) = \frac{1}{(\sqrt{2})^{n_{id}}} \frac{1}{4} \frac{2}{\pi m_{\chi}} \sum_{i,i} C_{i}(\mu) C_{j}^{*}(\mu) \times Z_{\gamma}^{33}$

Martin Vollmann — γ -rays from heavy DM

Factorization formulas (Sudakov-log resumm.)

$$(\mu, \nu) \times \int d\omega \left(J^{SU(2)}(4m_{\chi}(m_{\chi} - E_{\gamma} - \omega/2), \mu) W^{SU(2), ij}_{IJ, WY}(\omega, \mu, \mu) \right)$$

$$+J^{\mathrm{U}(1)}(4m_{\chi}(m_{\chi}-E_{\gamma}-\omega/2),\mu)W^{\mathrm{U}(1),ij}_{IJ,WY}(\omega,\mu,\nu)\Big)$$

$${}^{3}(\mu,\nu) \times \int \mathrm{d}\omega J^{\mathrm{SU}(2)}(4m_{\chi}(m_{\chi}-E_{\gamma}-\omega/2),\mu)\tilde{W}^{ij}_{IJ}(\omega,\mu,\nu)$$

Sudakov double logs

Endpoint spectrum Validity regimes and accuracies of several existing calculations

- Line only: $m_X^2 = 0$
 - Ovanesyan, Rodd, Slatyer, Stewart 1612.04814 NLL' for wino
- Narrow 'nrw': $4m_{\gamma}^2 \gg m_X^2 \sim m_W^2$ (or $1 \gg 1 x \sim m_W^2/m_{\gamma}^2$)
 - Beneke, Broggio, Hasner, MV 1805.07367 NLL' for wino
 - Beneke, Hasner, MV, Urban 1912.02034 NLL' for higgsino
- Intermediate 'int': $4m_{\gamma}^2 \gg m_X^2 \sim 2 m_{\gamma} m_W$ (or $1 x \sim m_W/m_{\gamma}$)
 - Beneke, Broggio, Hasner, MV, Urban 1903.08702 NLL' for wino
 - Beneke, Hasner, MV, Urban 1912.02034 NLL' for higgsino
- Wide: $4m_{\chi}^2 \gg m_X^2 \gg m_{\chi} m_W$ (or $1 \gg 1 x \gg m_W / m_{\chi}$)
- Martin Vollmann γ -rays from heavy DM

Baumgart, Cohen, Moulin, Moult, Rinchiuso, Rodd, Slatyer, Stewart, Vaidya — 1808.08956 — NLL for wino

Motivation

Phenomenology

Sudakov logs

Results

Sommerfeld enhancement

Conclusions

Motivation

Phenomenology

Sudakov logs

Results

Sommerfeld enhancement

Conclusions

Results

Martin Vollmann — γ -rays from heavy DM

EBERHARD KARLS

Martin Vollmann — γ -rays from heavy DM

EBERHARD KARLS

Martin Vollmann — γ -rays from heavy DM

Martin Vollmann — γ -rays from heavy DM

Martin Vollmann — γ -rays from heavy DM

Numerical results with DMy Spec Cumulative cross sections (effect of the $\gamma\gamma$ line)

Martin Vollmann — γ -rays from heavy DM

Fixed-order cross sections Breakdown of the perturbative expansion (after Sommerfeld resummation)

Numerical results Sommerfeld resonance shift and Sudakov suppression

Martin Vollmann — γ -rays from heavy DM

Matching with the continuum (parton showers)

Matching with the continuum (parton showers)

Matching with the continuum (parton showers)

DM₂Spec Instrument response function

Martin Vollmann — γ -rays from heavy DM

Motivation

Phenomenology

Sudakov logs

Results

Sommerfeld enhancement

Conclusions

Motivation

Phenomenology

Sudakov logs

Results

Sommerfeld enhancement

Conclusions

Conclusions

Conclusions A 50yrs old story of EWimps coming to a slow (50 more years?) end

- the near future
- Electroweak effects are extremely important
 - important role
- Provided a complete description of prompt gamma-ray spectra from wimp annihilation for the benchmark wino and higgsino models

- apparent in these spectra
- The full MSSM is the next big resummation factory to look at!

Martin Vollmann — γ -rays from heavy DM

• Unexplored heavy WIMP parameter-space chunk to be probed by indirect detection observations in

Besides Sommerfeld enhancements, Sudakov-log resummation at the endpoint plays a very

DMSpec

Demonstrated a perfect matching and consistency between different regimes/calculations

