Interpretation of the XEON1T low ER anomaly in the light of XENONnT

Manfred Lindner

DMnet symposium, MPIK Heidelberg, Sept. 13-15, 2022

The XENON Dark Matter Program

The XENON program at Gran Sasso, Italy (3600 mwe)

Trentino-Alta Iomhartía	XENON10	XENON100	XENON1T &	& XENONnT
Vale d'Aosta Piemonte Ligura Sardegna Sardegna Sardegna Sscila				
Period	2005-2007	2008-2016	2012-2018	2020-2024
Total mass	25 kg	161 kg	3200 kg	~8000 kg
Drift length	15 cm	30 cm	100 cm	150 cm
Status	Completed (2007)	Completed (2016)	Running	Construction
σ _{SI} limit (@50 GeV/c²)	$8.8 \times 10^{-44} \text{ cm}^2$	$1.1 \times 10^{-45} \text{ cm}^2$	$1.6 \times 10^{-47} \text{ cm}^2$ (2018)	$\begin{array}{c} 1.6 \times 10^{-48} \text{ cm}^2 \\ (2023) \end{array}$
XENONnT was prepared while XENON1T was running				

→ switching gears

Sensitivity: Bigger & less Background

Background reduction

→ extremely challenging:

- material selection
- screening $(\gamma, Rn, ...)$
- graded shielding
 - deep underground
 - veto systems
 - water
- cryogenic distillation
- pulse shape analysis

Powerful Devices: Dual-Phase TPCs

XENON1T: NR Search for WIMPs

XENON1T: Results on WIMPs

→ Most stringent result on SI scattering of WIMP Dark Matter down to 3 GeV/c² masses [PRL 121, 111302 + PRL 123, 251801]

Search for New Physics with ER Events

Energy Reconstruction and Resolution

Combine light and charge

$$E = W \cdot (n_{ph} + n_e)$$
$$= W \cdot \left(\frac{S1}{g_1} + \frac{S2}{g_2}\right)$$

\rightarrow detector constants g₁ and g₂

- Anti-correlation between light and charge
 Checked with calibration sources
- Energy resolution < 5 % at 50 keV</p>

The XENON1T low E_R excess

Not expected, but various options were studied: Tritium, ³⁷Ar, ...

Explanation #3: New Physiccs

- A singal from where?
- Sun:
 - neutrinos (exist, but CEvS too small $\leftarrow \rightarrow$ v-floor)
 - → BUT close: Maybe some non-standard interaction with electrons
 - axions produced in the sun

• DM flow

- some new particle
 - → not WIMPs
 - → light and not hot DM? A new light boson?

Diffuse background of invisible particles consistency with other searches/limits

So far O(450) papers which cite the XENON1T result

 \rightarrow mostly theory explanations with 3 main directions: Axions, v's light bosons

XENON1T → XENONnT

Meanwhile: Changes and re-assembly done \rightarrow filling \rightarrow commissioning \rightarrow data taking: SR0 – during Covid times!

A few weeks ago: XENONnT

Most likely / plausibel explanation: A tiny ³H contamination in XENON1T

Consequence:

→ need no longer explain an excess

→ very interesting lessons (new limits) on all kind of new physics

Proximity to the Neutrino Floor: Enhancements?

Large Neutrino Magnetic Moment

Detection

Solar neutrino spectrum

μ_{ν} in the Standard Model and beyond

Dirac:
$$\mathcal{L} \supset \mu_{\nu} \overline{\nu}_{L} \sigma_{\mu\nu} \nu_{R} F^{\mu\nu} + m_{\nu} \overline{\nu}_{L} \nu_{R} + \text{H.c.}$$

 μ_{v} and v mass operators have the same chiral structure $\rightarrow \mu_{v}$ typically proportional to m_{v}

SM+
$$\nu_{\rm R}$$
: $\mu_{\nu} = \frac{eG_F m_{\nu}}{8\sqrt{2}\pi^2} = 3 \times 10^{-20} \mu_B \left(\frac{m_{\nu}}{0.1 \text{ eV}}\right)$

Transition mag. moment for Majorana v's:

$$\mu_{ij} = -\frac{3eG_F}{32\sqrt{2}\pi^2}(m_i \pm m_j) \sum_{\ell=e,\mu,\tau} U_{\ell i}^* U_{\ell j} \frac{m_\ell^2}{m_W^2}$$

 \rightarrow O(10⁻²³)

BSM models significantly enhance neutrino μ_{ν} e.g. MSSM with L violation by R-parity violation ~ λ '

$$\mu_{\nu} \sim \lambda'^2 / (16\pi^2) m_{\ell}^2 A_{\ell} / M_{\tilde{\ell}}^4$$

 $\Rightarrow \mu_v \leq 10^{-13} \mu_B$

 $A_l \leftrightarrow \rightarrow$ SUSY breaking trilinear coupling $M_{\tilde{\ell}} \leftrightarrow \rightarrow$ slepton mass

Rather general: Most BSM models with TeV-ish scales allow/predict $\mu_v \leq 10^{-13} \mu_B$

Pushing higher often leads to two problems:

- light new particles that should have been discovered

- intrinsic relation between magnetic moment and radiative neutrino masses

→ neutrino mass shifts which are much bigger than allowed w/o fine-tuning

But: Symmetries can unlock the MM/radiative mass problem See e.g.: ML, B. Radovčić, J. Welter, JHEP 07 (2017) 139 symmetries for v mass patterns \rightarrow impact on $m_v \leftarrow \rightarrow \mu_v$ relation

K.S. Babu, S. Jana, ML, JHEP 10 (2020) 040 Horizontal $SU(2)_H$ broken by muon Yukawa coupling Main point:

$$\mathcal{L}_{\text{mag.}} = (\nu_e^T \quad \nu_\mu^T) C^{-1} \sigma_{\mu\nu} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} \nu_e \\ \nu_\mu \end{pmatrix} F^{\mu\nu} \longleftrightarrow \mathcal{L}_{\text{mass}} = (\nu_e^T \quad \nu_\mu^T) C^{-1} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \nu_e \\ \nu_\mu \end{pmatrix}$$

 $\mathcal{L}_{\text{mass}}$ is not invariant $\Rightarrow m_v = 0$ in the $SU(2)_H$ limit while μ_v is allowed + corrections \Rightarrow elegantly generates the correct v mass scale

XENONnT

arXiv: 2207.11330

No need to enhance solar neutrino interactions

strongest laboratory limits on neutrino magnetic moments
 no need to decouple magnetic moments and radiative masses

Signal Interpretaion: Solar Axions?

Production:

Detection via axio-electric effect

I.ABC

2. Primakoff

$$\sigma_{ae} = \sigma_{pe} \frac{g_{ae}^2}{\beta} \frac{3E_a^2}{16\pi\alpha m_e^2} \left(1 - \frac{\beta^{2/3}}{3}\right)$$

20

 \rightarrow Ways around?

See e.g.: XENON1T excess from anomaly-free Axion-like Dark Matter and its implications for Stellar Cooling Anomaly, F. Takahashi, M. Vamada, W. Vin, PRI, 125 (2020) 16, 161801

F. Takahashi, M. Yamada, W. Yin, PRL 125 (2020) 16, 161801

WD and RG explained simultaneously better when ALP constitutes about 10% of DM

XENONnT

arXiv: 2207.11330

➔ No need to argue for enhancements which avoid astronomical conflicts

arXiv: 2207.11330

strong laboratory limits on ALPs and dark photons

Bosonic Dark Matter

E.g. axion-like pareticles (ALPs) – not related to strong CP problem, but interesting → no strict mass-coupling relation

$$R \simeq \frac{1.5 \times 10^{19}}{A} g_{\rm ae}^2 \left(\frac{m_{\rm a}}{\rm keV/c^2}\right) \left(\frac{\sigma_{\rm pe}}{\rm b}\right) \rm kg^{-1} \rm d^{-1}$$

→ Expect a monoenergetic peak around the rest mass

→ But: Why should the mass be close to XENON1T threshold?

Many Solutions: Hidden Dark Sectors

Receipe: Dark sector + light particles + weak coupling

A few examples:

- Light new physics in XENON1T
 - C. Bœhm, D. Cerdeno, M. Fairbairn, P. Machado, A. Vincent, arXiv:2006.11250
- Light vector mediators facing XENON1T data
 D. Aristizabal Sierra, V. De Romeri, L.J. Flores, D.K. Papoulias, PLB 809 (2020) 135681
- Shining dark matter in Xenon1T
 - G. Paz, A. Petrov, M. Tammaro, J. Zupan, arXiv: e-Print:2006.12462
- Mirror Dark Matter and Electronic Recoil Events in XENON1T L. Zu, G.W. Yuan, L. Feng, Y.Z. Fan, arXive:2006.14577
- XENON1T Anomaly: A Light Z'
- ML, Y. Mambrini, T. de Meloc, F.S. Queiroz, arXiv:2006.14590
- Boosted Dark Matter Interpretation of the XENON1T Excess
 B. Fornal, P. Sandick, J. Shu, M. Su, Y. Zhao, Phys.Rev.Lett. 125 (2020) 16, 161804

+ many more

Light Dark Sectors $\clubsuit \to E_R$ Spectrum

D. Sierra, V. De Romeri, L. Flores, D. Papoulias, arXiv:2006.12457 Also:

C. Boehm, D. Cerdeno, M. Fairbairn, P. A. Machado, A. Vincent, ArXiv:2006.11250

A. Bally, S. Jana, A. Trautner, PRL 125 (2020) 16, 161802

➔ new neutrino-lepton interactions mediated by a light vector particle

now: limits on masses & couplings

DM Particles with a fast Component

K Kannike, M. Raidal, H. Veermae, A. Strumia, arXiv:2006.10735

elastic DM+e \rightarrow DM+e' scattering DM with initial velocity: \vec{v}_{DM} electron initial/final velocity: $\vec{v}_e \rightarrow \vec{v'}_e$ \rightarrow Momentum transfer:

→ $E_R \approx 2.4 \text{keV}$ for $m_{DM} \gg m_e$ with $v_{DM} \approx 0.1$

Problem: Fast component gravitationally not bound to galaxy ←→ sub-dominant...
→ limits on up-scattering of fast components

$$q \equiv m_{\rm DM}(v'_{\rm DM} - v_{\rm DM}) = -2\mu v_{\rm rel}$$
$$\simeq -\begin{cases} 2m_{\rm DM}(v_{\rm DM} - v_e) & \text{for } m_{\rm DM} \ll m_e \\ 2m_e(v_{\rm DM} - v_e) & \text{for } m_{\rm DM} \gg m_e \end{cases}$$

Favoured region

Sun heated MeV-Scale Dark Matter

Y. Chen, M.Y. Cui, J. Shu, X. Xue, G.W. Yuan, Q. Yuan, arXiv:2006.12447

Explain signal by the MeV-scale dark matter heated inside the Sun ($\approx 1.5 \text{ x } 10^7 \text{ K}$)

Energy (keV)

- Expect annual modulation w/o v's or axions

M. Lindner, MPIK

man (MeV)

Conclusions

- Recent results of XENONnT on low E_R:
 - impressive improvements (background, exposure)
 - excess of low E_R events is gone
 - ➔ no need to explain extra events by some new physics
 - very interesting lessons on and implications for new physics:
 - strongest laboratory limit on magnetic moments
 - \rightarrow decoupling of MM from radiative masses is not required
 - strong limits on axion couplings, ALPs and dark photons
 - \rightarrow need not resolve tensions with astronomy
 - no need for various new dark sector bosons and/or mechanisms

- ...

• The WIMP search continues

- XENONnT: stay tuned...