The 2nd DMNet International Symposium, Sept 2022

Cosmic anomalies: dark matter or astrophysics?

Indirect searches for dark matter

Many, many anomalies over the years

Types of anomalies

Excesses

- Signal above known sources <u>and</u> known systematics
- Critically depends on
 - How confident we are at extrapolating source properties
 - How well we think we can model backgrounds

Lines

- Narrow excesses (consistent with energy resolution) in addition to known emission lines
- Critically depends on
 - Completeness of emission line databases
 - Calibration of detector

Anomalies for today

Two continuum excesses:

- 1. GeV gamma-ray excess
- 2. And maybe related anti-proton excess

Two lines

- 1. 3.5 keV X-ray line
- 2. (511 keV line excess)
 - Brief background
 - Anomaly relative to what?
 - Dark matter vs astrophysics
 - Current status

GeV Gamma-ray excess

Excess: unexplained excess found in Fermi-LAT data

- Since 2009
- Spectra peaks at ~GeV
- Seen out to $\sim 10 \deg$ \bullet
- Significance $\sim 20-60\sigma$
- Many systematics checks

Goodenough & Hooper (2009) Fermi Coll. (2016) Vitale & Morselli (2009) Hooper & Goodenough (2011) Horiuchi et al (2016) Hooper & Linden (2011) Boyarsky et al (2011) Abazajian & Kaplinghat (2012) Horiuchi et al (2016) Gordon & Macias (2013) Macias & Gordon (2014) Abazajian et al (2014, 2015) Calore et al (2014) Daylan et al (2014) Hooper & Slatyer (2013) Huang et al (2013) Zhou et al (2014) Daylan et al (2014) Calore et al (2014) Selig et al (2015) Huang et al (2015) Gaggero et al (2015) Carlson et al (2015, 2016) de Boer et al (2016) Yang & Aharonian (2016)

Abazajian et al (2018, 2020) Linden et al (2016) Ackermann et al (2017) Linden et al (2016) Ackermann et al (2017) Macias et al (2019) Bartels et al (2018) Balaji et al (2018) Zhona et al (2019) Chang et al (2020) Buschmann et al (2020) Leane & Slatyer (2020) List et L (2020) Murgia (2020) Di Mauro (2020) Burns et al (2020) Di Mauro (2021) Calore et al (2021) Cholis et al (2022) McDermott et al (2022)

Excess relative to what?

╉

Data

Cosmic-ray related emission

Known sources

New sources, e.g., dark matter

Interpretations

Is it dark matter?

Candidate: WIMPs

- Spectra: O(100) GeV mass, various hadronic channels
- Approx. thermal cross section

Is it astrophysics?

Candidate: millisecond pulsars

- Hundreds seen in gamma rays
- Spectra: similar to the GeV excess
- O(10⁴) needed in the Galactic Center (quite reasonable)

Hypotheses

VS

VS

Dark matter annihilation

Astrophysics (pulsar)

nature astronomy

Galactic bulge preferred over dark matter for the Galactic centre gamma-ray excess

Macias et al (2018)

► WITHOUT bulge (representative of previous studies)

nature astronomy

Galactic bulge preferred over dark matter for the Galactic centre gamma-ray excess

► WITHOUT bulge (representative of previous studies)

← WITH bulge Including our new extended bulge, the data no longer shows evidence for a spherical excess

Also Bartels et al (2018)

G

Evidence for Unresolved γ -Ray Point Sources in the Inner Galaxy

Model as smooth (DM motivated) & grainy (pulsar motivated) templates

Results:

- Smooth: ~0%
- Grainy: ~8.7%

Lee et al (2016) See also Bartels et al (2016)

week ending 5 FEBRUARY 2016

G

Evidence for Unresolved γ -Ray Point Sources in the Inner Galaxy

Model as smooth (DM motivated) & grainy (pulsar motivated) templates

Results:

- Smooth: ~0%
- Grainy: ~8.7%

If grainy model is not added, smooth becomes ~8%

 Preference for subthreshold point sources over smooth dark matter
 Could be faint pulsars

> Lee et al (2016) See also Bartels et al (2016)

Dark matter implications

Perhaps we found a physically-motivated, <u>better astrophysical model</u> which provides a better explanation of the data than DM annhilation

Constrains thermal dark matter up to ~500 GeV

Abazajian et al (2020)

- Impacts of NFW slope [0.5,1.5] & sphericity
- Impacts of background modeling

- Impacts of core (1 kpc) & sphericity
- Impacts of background modeling

Ongoing developments

Morphology

Many new strategies, some find preference for the bulge, others do not. Systematic comparison warranted. *Macias et al (2019), Abazajian et al (2020), di Mauro (2021)*

Macias et al (2019), Abazajian et al (2020), di Mauro (2021), Calore et al (2021), Pohl et al (2022), McDermott et al (2022)

Point sources

Faint end is experimentally indistinguishable from a smooth source. Including more information could help. Leane & Slatyer (2019, 2020), Chang et al (2019), Zhong et al (2019), Buschmann et al (2020), Calore et al (2021)

Anti-proton excess

Anti-protons are useful probes of new physics

Relative to what?

Secondaries produced by pp collisions of astrophysical cosmic rays.

Excesses seen in PAMELA & precision data by AMS-02

Cuoco et al (2017)

Anti-proton excess

Anti-protons are useful probes of new physics

Relative to what?

Secondaries produced by pp collisions of astrophysical cosmic rays.

Excesses seen in PAMELA & precision data by AMS-02

Is it dark matter? Intriguing

Systematics

But systematics are a concern

- Cross sections
- Solar modulation
- Injection & propagation
- Correlating errors
- Removes need for DM
 Constraints GeV excess

X-ray lines

Line: X-ray contains many atomic transition lines, but unexpected lines found

 E_{γ} = 3.5 keV

- 73 galaxy clusters 4 to 5σ with XMM
- Range z = 0.01 to 0.35
- Perseus 2.2σ with Chandra

- Perseus 2.3σ with XMM
- M31 3σ with XMM
- Combined ${\sim}4\sigma$

Bulbul et al (2014)

Boyarsky et al (2014)

Metal line origin?

Relative to: modeling the complex atomic line emissions of the plasma. The 3.5 keV line is difficult to explain with current models.

Is it dark matter?

CDM

keV sterile neutrino dark matter: can radiatively decay to active neutrinos + X-ray

 $E_{\gamma} = m_s/2$

It can be produced via oscillations and has attractive features beyond CDM

Abazajian (2014), Horiuchi et al (2016)

Sterile neutrino dark matter

Suppression of small-scale power

Many constraints

Other X-rays, Galaxy satellites, Lyman-alpha, phase-space limits

Cherry & Horiuchi (2017) See also Schneider (2016), DES (2021)

Roach et al (2022)

Origin not yet settled but oscillation-based production of ~7.1 keV sterile neutrino strained; use other production mechanisms

511 keV line excess

Excess: Strong signal of positronium decays seen by INTEGRAL (requires $\sim 2x10^{43}$ e+ /s)

Relative to: various astrophysical sources

Supernovae X-ray binaries NS mergers

The signal is **much too luminous** in the Galactic Center :

Bulge / disk ~ 1 But predicted < 0.5

Knodlseder et al 2005, Weidenspointer et al 2008, Siegert et al 2016

 \rightarrow Is it a dark matter related phenomenon??

e.g., Boehm et al (2004) Finkbeiner & Weiner (2007)

Detailed morphology study

Which model combinations best describe the data?

Siegert et al (2021)

Baseline model	A	dd. sour	ce	ΔAIC_{\pm}
IC		HI		15.6
IC		FB		35.1
IC		BB		281.5
IC		CO		303.6
IC		HI+CO		382.6
IC		NB		507.6
IC		DM2		510.6
IC		DMO		597.6
IC		BB+NB		618.2
IC+BB+NB		CO		-3.7
IC+BB+NB		DM2		-1.3
IC+BB+NB		DMO		2.5
IC+BB+NB		CO+HI		15.4
IC+BB+NB		HI		16.0
IC+BB+NB+HI		DMO		5.6
IC+BB+NB+HI+CO		DMO		5.9

- When mutually exclusive, dark matter and bulge are both detected
- When simultaneously added, the dark matter significance become negligible
 - Astrophysically motivated model removes the need for a symmetric DM model

Concluding remarks

- Astronomical observations create ample opportunities to further our study of dark matter
- There have been many, many searches & anomalies. This is natural as we push the frontier of sensitivity. It is expected and should not be discouraged.
 - Dark matter is usually capable of explaining these anomalies, given dark matter's rich phenomenology
 - Meanwhile, most anomalies have been explained by non-DM effects: a combination of backgrounds and astrophysical sources. We should not be discouraged. This leads to improved sensitivity to dark matter.
 - Some anomalies still remain debated, including the GeV excess and the 3.5 keV line
- In the future we can expect some resolution to current anomalies, but at the same time, new anomalies & surprises

Thank you!

BACKUP

Systematics

Many astrophysical systematics

1. Bulge model

Shu

- 2. Fermi bubble model
- 3. Background (IC models)
- 4. Background (gas maps)
- 5. Point source catalogs
- 6. Galactic disk masks

Significance of NFW² for bulge and IC model combinations

Macias et al (2018, 2019)

Systematics

Gas maps: using the gas maps used by the Fermi Diffuse models yield the same conclusions

Base	Source	$\log(\mathcal{L}_{ ext{Base}})$	$\log(\mathcal{L}_{\text{Base+Source}})$	$\mathrm{TS}_{\mathrm{Source}}$	σ	Number of
						source parameters
baseline-NB+Boxy	NFW	-172005.9	-171999.0	13.8	1.4	19
baseline+NFW	NB+Boxy	-172167.9	-171999.0	337.8	18.3	2×19
baseline*	NFW	-173565.0	-172929.2	1272	34.6	19
$baseline^{+}NFW$	<u>NB+B</u> oxy	-172929.2	-172533.0	792.4	28.2	2×19
baseline [*] +NB+Boxy	NFW	-172547.4	-172533.0	28.8	3.0	19
Point sources: using	none or the 2	FIG point so	urce catalog yiel	d the sam	ne con	clusions
baseline	2FIG	-172461.4	-170710.5	3501	37.3	81×19
baseline+2FIG	Boxy	-170710.5	-170536.3	348.4	18.7	19
baseline+2FIG	NFW	-170710.5	-170484.6	452	19.9	19
baseline+2FIG	NB	-170710.5	-170470.5	480	20.6	19
baseline+2FIG+NB	NFW	-170470.5	-170387.8	165	11.1	19
baseline+2FIG+NB	Boxy	-170470.5	-170317.2	306.6	17.5	19
baseline-2FIG+NB+Be	oxy NFW	-170317.2	-170313.5	7.4	0.5	19
Galactic plane mask	: using a b <	1 deg mask	yields the same	conclusio	ons	
baseline	NFW -430	824.6 -430	696.9	255 1 4	4.4	19
baseline	Boxy -4308	824.6 -430	626.1	397 18	3.5	19
baseline	NP -430	824.6 -430	189.9 1	269 33	5.6	22×19
baseline+NP	NFW -430	189.9 -430	097.0	186 12	2.0	19
baseline+NP	Boxy -430	189.9 -430	035.8	308 16	3.1	19
baseline+NP+Boxy	NFW -430	035.8 -430	026.3	19 2	2.0	19

Dark matter systematics

Kuhlen et al (2012)

Pulsar population synthesis

Millisecond pulsar population

Shows reasonable millisecond pulsar population model works

The bulge may host $O(10^4)$ millisecond pulsars below detection threshold

Also consistent with disk and globular cluster gamma rays

Gonthier et al (2018) See also Song et al (2021)

Small-scale structure anomalies

CDM is challenged by observations on small scales

- 1. Core/cusp problem: inner density profile steeper than data
- 2. <u>Missing satellites problem</u>: expect O(100) satellites but see ~10
- 3. Too big to fail problem: massive subhalos are too dense to match data

Boylan-kolchin et al (2011, 2012), Aquarius sims

"Massive failures"
Subhalos with V_{max} > 25
km/s that do not find
observational
counterparts: why do
these not "light" up?

Between 5 – 40 (median ~20) "*massive failures*" based on 48 realizations of the Milky Way Halo

Garrison-Kimmel et al (2014)

Is it dark matter?

keV sterile neutrino dark matter: can radiatively decay to active neutrinos + X-ray

 $E_{\gamma} = m_s/2$

It can be produced via oscillations and has attractive features beyond CDM

More developments

- Ultra-faint point population is degenerate with a smooth diffuse source
- Injected dark matter erroneously absorbed by sub-threshold point-source model
- Impacts of mismodeling diffuse model appears problematic

Leane & Slatyer (2019, 2020) Also Chang et al (2019), Zhong et al (2019), Buschmann et al (2020), Shunsaku Horiuchi Can be confident there's substantial point sources
 Allows DM signal to be hiding

Gamma-ray line

Line: ~130 GeV from Galactic Center region Relative to: power-law diffuse emission

> 3.2σ sig. (after trials factor)

CL Limit (cm⁻²s⁻¹)

95%

Weniger (2012)

Subsequently observed in galaxy clusters and unassociated LAT sources too.

 $b \, [deg]$

Hektor et al (2013) Su & Finkbeiner (2013)

Ultimately the line disappeared with <u>updated understanding of</u> detector calibration

Fermi collab. (2014)

Is it dark matter?

All features consistent with WIMPs

- Spectrum suggests O(100) GeV mass, approx. thermal cross sections
- J-factor well known

Shun

 Spatial morphology largely spherical, NFW-like, and centered on dynamical center

