Review dark matter direct detection

Teresa Marrodán Undagoitia marrodan@mpi-hd.mpg.de

DMNet International Symposium 2022

MAX-PLANCK-INSTITUT FÜR KERNPHYSIK D Heidelberg

Image credit: NASA, ESA, ...

Direct detection: dark matter in the Milky Way

$$\frac{dR}{dE}(E,t) = \frac{\rho_0}{m_{\chi} \cdot m_A} \cdot \int \mathbf{v} \cdot f(\mathbf{v},t) \cdot \frac{d\sigma}{dE}(E,\mathbf{v}) \, \mathrm{d}^3 \mathbf{v}$$

 $E_{\rm R} \sim \mathcal{O}(10\,{\rm keV})$

Astrophysical parameters:

- ρ₀ = local density of the dark matter in the Milky Way
- $f(\mathbf{v}, t) = WIMP$ velocity distribution

Parameters of interest:

- m_{χ} = WIMP mass (~ 100 GeV)
- σ = WIMP-nucleus elastic scattering cross section (SD or SI)

Detector requirements and signatures

- Large detector mass (grams up to several tonnes)
- Low energy threshold ~ few keV's or sub-keV
- Very low background and/or background discrimination (from γ's, e⁻'s, neutrons and ν's!)

J. Phys. G: 43 (2016) 1 & arXiv:1509.08767

• Other signatures of dark matter

- Annual modulated rate
- Directional dependance

Backgrounds and reduction strategies

- External γ 's from natural radioactivity:
 - ► Material screening & selection + Shielding
- External neutrons: muon-induced, (α, n) and from fission reactions
 - Go underground!
 - Neutron shielding
 - material selection for low U and Th concentrations
 - + Neutrinos from the Sun, atmospheric and from supernovae

- Liquids/gases: radioactive isotopes, Rn-emanation
- Solids: surface events from α or β -decays
- Cosmogenic activation important for all

Overview of WIMP searches

Direct detection experiments

J. Phys. G43 (2016) 1, 013001& arXiv:1509.08767

Annual modulation signature

- DAMA experiment @LNGS using ultra radio-pure Nal crystals
- Annual modulation of the background rate in the energy region (2 – 6) keV
- Last results (2021): signal at 13.7 σ

ANAIS, improved from PRD 103 (2021) 102005

ANAIS using Nal crystals @Canfranc:

- DAMA modulation disfavoured at 3.8 σ for [1-6] keV at 4.2 σ for [2-6] keV
- Experiment continuously taking data

Tests of annual modulation with NaI

Teresa Marrodán Undagoitia (MPIK)

Dark matter searches

Bolometer experiments

CRESST experiment

EDELWEISS experiment

Super-CDMS experiment

- Excellent sensitivities (low m_{χ}) due to their low energy thresholds
- CRESST: scintillating bolometer

CRESST, PRD 100 (2019) 102002 (E_{th} = 30 eV)

CDMS/EDELWEISS: germanium bolometers

CDMS-Lite, PRD 99 (2019) 062001 (E_{th} = 70 eV)

Results from cryogenic bolometers

New SuperCDMS HVeV result with 0.93 g silicon crystal with $E_{th} \sim 10 \text{ eV}$ missing in this figure PRD 105, 112006 (2022)

Teresa Marrodán Undagoitia (MPIK)

Dark matter searches

Low threshold searches with CCDs

SENSEI PRL 125 (2020) 171802

DAMIC PRL 123, 181802 (2019)

DANAE EPJC 77 (2017) 12, 905

DMSQUARE N. Avalos@TAUP2021

- Gram-scale Si detectors with $E_{th} \sim 50 \, eV_{ee}$
- 3D track reconstruction
- Test of DM-e⁻ scattering below to 1 MeV DM mass

& low mass WIMPs tests

→ Future: OSCURA, a 10 kg detector by SENSEI&DAMIC

DM-e⁻ scattering (light mediator) DAMIC @ iDM2022 by Danielle Norcini

@ICHEP2022 (DAMIC)

Cross sections for WIMP elastic scattering

• Spin-independent interactions: coupling to nuclear mass $\sigma_{SI} = \frac{m_N^2}{4\pi (m_{\chi} + m_N)^2} \cdot [Z \cdot f_p + (A - Z) \cdot f_n]^2, \quad f_{p,n}: \text{ eff. couplings to } p \text{ and } n$

Spin-dependent interactions: coupling to nuclear spin

 σ_{SD} = ³²/_π · G_F · ^{m²_χm²_N}/_{(m_χ+m_N)²} · ^{J_N+1}/_{J_N} · [a_p⟨S_p⟩ + a_n⟨S_n⟩]²

 ⟨S_{p,n}⟩: expectation of the spin content of the p, n in the target nuclei
 a_{n n}: effective couplings to p and n

Superheated fluid detectors

COUPP experiment

- Energy depositions > E_{th}
 → expanding bubble
 detected with cameras +
 piezo-acoustic sensors
- Bubble chamber with C₃F₈ superheated fluid

• Great sensitivity to spin-dependent σ

Figure from Eric Vázquez Jáuregui @ICHEP2022

- PICO40L: about to take data @SNOLAB
- PICO-500: ton-scale experiment to be installed in the miniCLEAN space @SNOLAB on 2023-2024

Teresa Marrodán Undagoitia (MPIK)

Advantages of liquid noble gases

- Large masses and homogeneous targets (LNe, LAr & LXe)
 Two detector concepts: single & double phase
- 3D position reconstruction → fiducialization
- Transparent to their own scintillation light

Single phase (liquid) -type of detector:

- High light yield using 4π photosensor coverage
- Pulse shape discrimination from scintillation
- Very effective in liquid argon (10⁸ NR/ER separation)

The DEAP single phase LAr detector

DEAP - LAr detector at SNOLAB, Canada

Dark matter Experiment with Argon and Pulse shape discrimination

- 3 600 kg total mass & 3 280 kg fiducial volume
- ► Results of 231 d DEAP, PRD 100 (2019) 022004
- Most competitive liquid argon results

From Jan. 2018 to Mar. 2020: blinded data \rightarrow analysis on-going

Two phase noble gas TPC

- Position resolution
 → XY from PMT pattern
 - → Z from drift time

- Scintillation signal (S1)
- Charges drift to the liquid-gas surface
- Proportional signal (S2)
- → Electron- /nuclear recoil discrimination

The DarkSide experiment

Top SiPM array

 Aiming at high mass dark-matter search ROI (20 – 200) keV_{nr}
 → filling with underground argon planned for 2026

- DarkSide-50 run @LNGS with 50 kg mass DarkSide, PRD 98 (2018) 102006 & PRL 121 (2018) 8, 081307
- DarkSide-20K: new global LAr collaboration
 - 50t total target mass
 - TPC inside an acrylic vessel
 - SiPM for light read-out (~ 19 m²)

Figure from the DarkSide collaboration

Current generation: LZ, PandaX-4T and XENONnT

LZ:

• 7 T target mass

PANDAX-4T:

• 4 T target mass

XENONnT:

• 6 T target mass

All running and collecting data!

 \rightarrow A race to measure WIMPs down to $\sigma \sim 10^{-48} \, \mathrm{cm}^2$

Reminder: XENON1T results I

XENON1T, publications from 2018 to 2021

- XENON1T operated at LNGS from 2016 to 2019 providing several world leading results in the last years
 - Migdal result: depends on the experimental confirmation of this effect!

Reminder: XENON1T results II

XENON1T, PRD 102 (2020) 072004

• Excess of events in (1-7) keV in the background (ER) region

- ~ 3.3 σ statistical significance
- → Unclear origin: Background? An interesting signal?

Dark matter searches

Recent LZ data

- SR1: 5.5t fiducial volume and 60 days of data
- Current best exclusion limit

Figures from LZ, arXiv:2207.03764

Teresa Marrodán Undagoitia (MPIK)

Dark matter searches

XENONnT

TPC: 1.5 m long und $1.5 \text{ m} \varnothing$ 5.9 t liquid xenon in the detector (8.5 t total mass)

- Assembled and commissioned during 2020
- First science run in 2021: SR0 with 1.16 tonne-years
- 3× larger target mass
- 5× less background

Teresa Marrodán Undagoitia (MPIK)

Improvements from 1T to nT

- New TPC and new cryostat
- Additional and improved PMTs (494 units in total)
- Novel liquid-phase purification system
- New neutron veto system (water-based in the current phase)
- New radon removal system

Radon background

Dominating background in XENON1T & other LXe experiments

- Extensive radon screening campaigns @MPIK
- Additional distillation (gas mode) to reach 1.7 µBq/kg
- Lowest radon level ever achieved in a LXe experiment
- <1 μBq/kg already reached in SR1!

Low energy response

- Calibration data: ³⁷Ar and ²²⁰Rn used to study the low energy response in XENONnT
- Efficiency at low energies: at ~ 80% above ~ 3 keV

SR0 electronic-recoil science data

- Spectrum still dominated by ²¹⁴Pb at low energies
- Above 40 keV, 2nd order weak processes dominate:
 - → Double electron capture 2ν ECEC of ¹²⁴Xe ($t_{1/2} = 2.23 \times 10^{21}$ y)
 - \rightarrow Double beta decay $2\nu\beta\beta$ of ¹³⁶Xe ($t_{1/2} = 1.1 \times 10^{22}$ y)

SR0 electronic recoil data

- No excess present in XENONnT
- Origin of XENON1T excess maybe a tritium background/statistics
 - \rightarrow XENONnT was throughly prepared to avoid tritium

Dark matter searches

Constrains on physics models

Teresa Marrodán Undagoitia (MPIK)

Dark matter searches

XLZD consortium

XENON, LUX ZEPLIN & DARWIN meeting in Karlsruhe, July 2022

Common paper with physics case: arXiv:2203.02309

Other detectors and technologies being developed but not discussed in this talk

CDEX, germanium

NEWS-G

Directional experiments CYGNO, low pressure gas NEWSdm, emulsion ANDROMeDa, nanotubes

Summary

Direct searches are quickly progressing covering a large DM range in mass and cross section

Exploring WIMPs but also light DM, ALPs, dark photons ...

Current signals/excesses are not confirmed

We hope for a dark matter discovery soon, ideally in various detectors/searches!

THANK YOU!

Solar axions

Hypothetical axions proposed as a solution to the 'strong CP-problem'

- $\rightarrow\,$ Solar axions would be produced in the Sun with $\sim\,keV$ energies:
 - Atomic recombination and de-excitation, Bremsstrahlung and Compton: ABC
 - Primakoff conversion of photons to axions
 - A mono-energetic 14.4 keV nuclear transition of ⁵⁷Fe

Solar axion detection

Detection of axions via axioelectric and inverse Primakov effects

- Energy resolution and shell structure affects the spectrum Xenon's L-shells have binding energies at 5.45 keV, 5.10 keV, and 4.78 keV
- Model-dependent couplings to matter (ABC flux dominant in DFSZ models while Primakoff is dominant in KSVZ)

Neutrino magnetic moment

Neutrinos acquire magnetic moment in extensions of the SM

- Source: neutrinos from the Sun (mostly from pp-reactions)
- Reaction: elastic scattering off electrons

Low-mass WIMP searches using the Migdal effect

Scheme from Dolan et al., PRL 121 (2018)101801

- Sudden acceleration of a nucleus can lead to excitation or ionization of the shell electrons Ibe et al., JHEP 03 (2018) 194
- Yet no experimental evidence of this effect!
- Two strategies being followed:
 - MIGDAL collaboration: ER+NR vertex in a low pressure gaseous detector
 - Nakamura et al.: two clusters (NR + X-ray) in position sensitive gaseous detector Nakamura et al., (2020) arXiv:2009.05939