

Kobayashi-Maskawa Institute for the Origin of Particles and the Universe

NEWSdm experiment

Directional dark matter search with super-high resolution nuclear emulsion

NAKA Tatsuhiro

Toho University

on behalf of NEWSdm collaboration

The 2nd Dmnet international symposium 2022.9.13-15 (presentation on 15th)

Direct Dark Matter search and Directionality

Good discovery potential with lower statistics (several 10 events enough)
High Background discrimination
Dark matter astronomy

"Tracking" is finally very important to identify the DM

51-100

NEWSdm experiment [Nuclear Emulsion for WIMPs Search – directional measurement]

LOI under review by the LNGS science committee

NEWSdm [Nuclear Emulsion for WIMP search- directional measurement]

Super-resolution nuclear emulsion and sub-micron tracking

Nano Imaging Tracker (NIT) for NEWSdm

AgBr(I) crystal

NIM A Nucl. Inst. Meth. A 718 (2013) 519-521 PTEP (2017)063H01

	Element	Mass fraction [%]	Atomic fraction [%]
Main target heavier DM	Ag	41.5	8.4
	Br	29.7	8.1
	I.	1.9	0.3
	С	12.3	22.7
	N	3.7	5.2
	0	9.2	12.5
	н	1.8	42.8
	S, Na + others	~0.1	0.1

Readout technologies

1 um

Current set-up and performance

- Blue LED (450 nm λ)
- \rightarrow 200 nm optical resolution
- CMOS camera image taking
- X100 objective lens

~ 0.1 kg/year/machine

Further selection

Elliptical shape analysis PTEP. 103H02 (2020) 10

Direction

ML selection

- \Rightarrow more likely track selection
- Plasmon analysis and superresolution

PTEP, 063H02,(2019) 6 Scientific Reports (2020) 10:18773

■ Ion-implantation

■ Nuclear recoil by neutron

Dark matter sensitivity

Demonstrated new tech.

Demonstration of directional dark matter search [surface run @ Nagoya University]

CYGNUS

(parallel to x axis)

Technical test at surface lab.

First demonstration of solid detector and directly tracking analysis
Directional search around 10 GeV/c2 region is first in the world

Proton recoil

Neutron Measurement

Sub-MeV or more energy neutron measurement by proton of > 100keV

Perfectly γ(or electron) background rejection by topological track information and crystal sensitivity

Boosted DM

- Annihilation process of two-component DM in the GC
- MeV scale DM and baryon scattering

 $\chi \chi \to XX \text{ [galactic center]}$ $X + N \to X + N \text{ Test of baryon interaction}$ BDM flux on the earth $\phi \sim 1.6 \ cm^{-2}s^{-1}\left(\frac{<\sigma v>}{5 \times 10^{-26} \ cm^3/s}\right) \left(\frac{5 \ MeV/c^2}{M_1}\right)^2$

Low-E Proton tracking

Low-energy proton beam by ionimplantation system

Setup condition :

- Horizontal exposure (~ 10°)
- NIT device : 70nm crystal + HA sensitization
- Data taking : PTS3 &4 analyzed

Angular distribution of proton induced by the ion-implantation system [10-100keV]

Proton recoil track of >10 keV was observed!!

Technical Application

NIT device

Thermal & cold neutron imaging

- Thermal & cold neutron imaging
- (1) $n + {}^{10}B \rightarrow \alpha + {}^{7}Li + 2.31 MeV$

T (41 μm) Vertex α (7.3 μm)

(2) n + ⁶Li $\rightarrow \alpha$ + T + 4.78MeV

EPJ C vol.78, 959 (2018)

- Neutron radiography
- Gravitational effect by ultra-cold neutron Etc.

Scanning system → Paleo detector

• Heavy dark matter

Galactic Archaeology!

- Q-ball
- Monopole

Current LNGS activities

Underground facility @ LNGS

Underground facility @ LNGS

Device Production ~ 100 g /production/4 hour (1 kg target production/week)

External background source	Shield power			
Environmental γ-rays	< 10 ⁻³			
Environmental neutrons	< 4.7 x 10 ⁻² (90 % C.L.)			

Background expectation

[Intrinsic radioactivity in the device]			
	Activity [mBq/kg]		
U-238	42		
Th-232	7-21		
K-40	40-130		
Ag-108m	50		
C-14	24000		

	Flux @ underground	Event rate for current selection condition [/kg/day] outside the shield	Event rate for current selection condition [/kg/day] w/ shield
μ	~10 ⁻⁸ /cm²/s	< 1 x 10 ⁻²	< 1 x 10 ⁻²
Environment γ-ray	0.38 /cm²/s	~ 1.8 x 10 ⁵	< 100
C-14 (intrinsic)		~100	~100
Neutron	~10 ⁻⁶ /cm²/s	< 0.1	< 10 ⁻³

Run operation

O(1) or less /g for electrons

~0.1 /g/day for electron (-50°C operation)

Extraction + Development

 \sim 5 /g for electrons

Integrated electron BG rate : 10 or less /g/month

Underground BG run status

Example of Selected candidate events

Underground BG run status

Electron efficiency is × 130 difference

- Ruled out as electron BG
 - Not so difference between two type NIT
 - 10 times higher event rate than electron BG expectation
 - track topology
- NO time dependency at -50°C
 - ⇒ Not CNO recoil
- Unlikely accumulate outside the shield

α-ray possibility

д

20

10

30

40

50 px

Rn measurement

			Bq/m^3	Sigm a	°C	humid.	mbar
PX vsrelZ	PY vsrelZ	hallF prod.room chamber opened	75.9	15.3	12.1	82.4	917.8
	0 * **********************************	hallF prod.room pouring desk	72.5	15.2	20.7	44.8	916.2
-20	-20 Hal	hallF prod.room fridge (wet gel)	71.0	9.1	8.4	52.6	912.6
10 -40	μ ₂ −40	hallF control room	81.1	16.7	17.5	44.5	907.4
	-60 	hallF prod.room chem.desk	89.2	16.1	19.5	39.6	909.8
		hallC compressed air	163.1	14.3	15.1	11.0	915.7
PX	PY Dry pro	DCESS hallC N2 20L/h	2.3	2.6	15.1	7.8	921.3
10		top of shield air	46.9	9.6	14.5	45.3	914.8
+0		hallF dev.room desk	87.0	16.4	17.2	53.5	907.1
		hall - corridor air	73.8	19.8	17.1	46.0	907.1
20		air (source of room air)	18.6	6.3	14.5	46.0	909.3
10	40 90000 1000 12000 900000 1000 12000 1000 12000				:	*average from	18h to end
		2 times higher al	oha-ray so	urce (Rn) wa	as	

2 times higher alpha-ray source (Rn) was contaminated in the drying air

Sub-MeV neutron measurement at LNGS

Neutron elastic scattering

 Observed signal increase consistent with environmental neutron signal

Flux @0.25-10 MeV <u>:(5.9±1.2) x 10⁻³ cm⁻² s⁻¹</u>

arXiv:2208.13366 (2022)

Next: underground measurement

Prospect

Scanning system upgrade

PTS5

+1

Current speed : 0.1kg/year/mothine

 \rightarrow 0.44 kg/y/machine x 5 machine ~ 2.0 kg/y scanning [2022-2023

Additional upgrade study is also on going ~ 2.0 kg/y scanning ⇒ > 50 kg/y [2024-]

* multi camera and wide view image taking

* 10 machine operation

Underground and surface run [2022-2023 task]

- Improvement to lower background condition and scale up
- Proton recoil tracking to search the BDM both surface and underground run
- Neutron measurement at underground lab

And, continue to various upgrade study for the device and data analysis

Conclusion

- NEWSdm is motivated by the directional dark matter search, and sub-micron length tracking by the Nano Imaging Tracker (NIT) based on the fine-grained nuclear emulsion
- Tracking ability for the nuclear recoil of O(10) keV was demonstrated by the ion-implantation system and neutron recoil
- Directional search was also demonstrated at the surface lab. using the telescope, and got the first limit with directional information
- Device facility at hall.F, LNGS was constructed, and all handling from device production is possible.
- Now, underground run at LNGS is promoting, and observed the higher level BG to our expectation
- ⇒ they are expected to be BG attributed to alpha-ray contaminated in dry process
- Sub-MeV neutron measurement on surface lab. at LNGS was succeeded , and go to underground measurement as next.

Back up

Potential of Directional Sensitive Search

Super-resolution system with localized surface plasmon resonance(LSPR) response

LSPR

80 nm 120 nm

40 nm

PTEP, 063H02,(2019) 6 <u>https://doi.org/10.1093/ptep/ptz033</u> Scientific Reports (2020) 10:18773

Modulate the intensity of each pixel in the image: $I_{\theta} = a \cos[2(\theta - \phi)] + b$

- heta polarization angle
- φ pixel "phase",
- *b* pixel brightness mean,
- a pixel brightness change amplitude

Device potential toward neutrino

0.9 0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

0

20

35 nm

Efficiency

Simulation for NIT device intrinsic potential

2 grain

3 grain

80

100

Tracking efficiency

60

Energy of Carbon [keV]

C: 10 keV

Br: 45 keV

Ag : 55 keV

40

Resolution[rad]

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

0

20

40

Angular resolution

60

Energy[keV]

2 grain

3 grain

80

100

✓ 10 ton production : special machine optimized this device is required (more simple system : current machine is over speck)

✓ High scanning speed machine is needed (current highest machine in the nuclear emulsion field is ~1 ton/month)

✓ under studying about light emission from NIT as event trigger₂₆

NEWSdm collaboration Eur. Phys. J. C 78 (2018) 578 DOI: 10.1140/epjc/s10052-018-6060-1

Future facility for NEWSdm: 10kg and beyond

Emulsion facility and shielding with an equatorial telescope

