Indirect searches on heavy dark matter decays and inflation

Koji Ishiwata

Kanazawa University

Based on

• JCAP 01 (2020) 003 (with O. Macias, S. Ando, M. Arimoto)

arXiv:2207.05747 (with S. Ando, N. Hiroshima)

The 2nd DMNet International Symposium "Direct and Indirect Detection of Dark Matter"

Heidelberg, September 15, 2022

1. Introduction

Dark matter (DM)

- Electrically neutral
- Non-baryonic
- Stable or sufficiently long-lived
- Non-relativistic
- $\Omega_{\rm DM} \simeq 0.26$
- $10^{-31} \text{ GeV} < m_{\text{dm}} \lesssim M_{\text{Pl}}$ or $10^{-14} < m_{\text{dm}}/M_{\odot} \lesssim 10^{-12}$

Direct searches DM SM \rightarrow DM^(') SM^(')

Direct searches DM SM \rightarrow DM^(') SM^(')

Spin-independent cross section @QCD NLO

Hisano, KI, Nagata '15

Spin-independent cross section @QCD NLO

Hisano, KI, Nagata '15

Spin-independent cross section @QCD NLO

Hisano, KI, Nagata '15

Ando, Benoit-Lévy, Komatsu '13 Fornengo, Regis '13 Ando '14

Xia, Cuoco, Branchini, Viel '15

Tomographic cross-correlation

Reducing the astrophysical BG

For $b\overline{b}$ channel

Decaying DM

Annihilating DM

Ando, KI '16

For more updates, see K. Hayashi's talk

Direct searches DM SM \rightarrow DM^(') SM^(')

<u>Outline</u>

1. Introduction

- 2. Cosmic rays (CRs) from decaying heavy DM
- 3. Primordial curvature perturbations
- 4. Conclusion

2. CRs from decaying heavy DM

Past works on heavy decaying DM:

Esmaili, Ibarra, Peres '12

Murase, Beacom '12

Ahlers, Murase '14

Murase, Laha, Ando, Ahlers '15

Aloisio, Matarrese, Olinto '15

Kalashev, Kuznetsov '16

Cohen, Murase, Rodd, Safdi, Soreq '17

Kachelriess, Kalashev, Kuznetsov '18

Sui, Bhupal Dev '18

But no comprehensive analysis

Past works on heavy decaying DM:

Esmaili, Ibarra, Peres '12

Murase, Beacom '12

Ahlers, Murase '14

Murase, Laha, Ando, Ahlers '15

Aloisio, Matarrese, Olinto '15

Kalashev, Kuznetsov '16

Cohen, Murase, Rodd, Safdi, Soreq '17

Kachelriess, Kalashev, Kuznetsov '18

Sui, Bhupal Dev '18

But no comprehensive analysis

Let's use <u>all data to constrain DM</u> Multimessenger astrophysical data

CRs

Coleman et al. (Snowmass) '22

Neutrinos

Coleman et al. (Snowmass) '22

Integrated gamma flux

Pierre Auger Observatory (PAO) '22

QCD/EW cascades

QCD/EW cascades

QCD/EW cascades

Hadronic/EM cascades

QCD/EW cascades

Hadronic/EM cascades

We need to simulate

- Cascades at the prompt decay
- Cascades during the propagation

Heavy DM decay

QCD/EW cascades

Birkel, Sarkar '98 Sarkar, Toldra '02 Berezinsky, Kachelriess '01 Aloisio, Berezinsky, Kachelriess '02 Barbot, Drees '02, '03 Bahr et al. '08

Bellm et al. '15

Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) Eqs.

In the present work, we focus on $b\bar{b}$ final state

$$\frac{dN_I}{dz} = 2\sum_h \int_z^1 \frac{dy}{y} D_b^h(y, m_{\rm dm}^2) f_h^I(z/y)$$

 $z = 2E_I/m_{\rm dm}$

In the present work, we focus on $b\bar{b}$ final state

$$\frac{dN_I}{dz} = 2\sum_h \int_z^1 \frac{dy}{y} D_b^h(y, m_{\rm dm}^2) f_h^I(z/y) \qquad z = 2E_I/m_{\rm dm}$$

Fragmentation functions of the hadrons h by solving DGLAP Eqs.

 $h = \pi^{\pm}, \pi^{0}, K^{\pm}, K^{0}, \bar{K}^{0}, n, \bar{n}, p, \bar{p}$

Kniehl, Kramer, Potter '00

Kretzer '00

Albino, Kniehl, Kramer '05

Hirai, Kumano, Nagai, Sudoh '07

Hirai, Kumano '12

In the present work, we focus on $b\bar{b}$ final state

$$\frac{dN_I}{dz} = 2\sum_h \int_z^1 \frac{dy}{y} D_b^h(y, m_{\rm dm}^2) f_h^I(z/y) \qquad \qquad z = 2E_I/m_{\rm dm}$$

Distributions function of stable particles I from the hadron decays, given by Pythia

 $I = e^{\pm}, \gamma, p, \bar{p}, \nu, \bar{\nu}$

Sjstrand et al. '15

Propagation of CRs in the Galaxy

Strong et al. '00 Boschini et al. '17

Propagation of CRs in the Galaxy

Strong et al. '00 Boschini et al. '17

Propagation of CRs in the extragalactic region

- Batista et al. '16
- Heiter et al. '18
- Mucke et al. '99
 - Lee '98

Propagation of CRs in the *extragalactic* region

 $m_{\rm dm} = 10^{12} \,\mathrm{GeV}$ $\tau_{\rm dm} = 10^{27} \,\mathrm{s}$

 $m_{\rm dm} = 10^{12} \,\mathrm{GeV}$ $\tau_{\rm dm} = 10^{27} \,\mathrm{s}$

 $m_{\rm dm} = 10^{12} \,{\rm GeV}$ $\tau_{\rm dm} = 10^{27} \,{\rm s}$

Extragalactic γ in $10^5 \,\text{GeV} \lesssim E_{\gamma} \lesssim 10^9 \,\text{GeV}$ is suppressed due to the pair production in the CMB

 $m_{\rm dm} = 10^{12} \,\mathrm{GeV}$ $\tau_{\rm dm} = 10^{27} \,\mathrm{s}$

Galactic contribution is constrained by PAO

 $m_{\rm dm} = 10^{12} \,\rm GeV$

 $\tau_{\rm dm} = 10^{27} \, \rm s$

Extragalactic contribution is constrained by Fermi-LAT

Integrated γ

Galactic flux is dominant

Integrated *γ* PAO, TA, CASA-MIA, KASCADE, and KASCADE-Grande give constraints

$\nu + \bar{\nu}$ flux

Total

Extragalactic flux is dominant

Extragalactic contribution is constrained by IceCube and PAO

 $\tau_{\rm dm} = 10^{27} \, {\rm s}$

Constraints on DM lifetime (extragalactic)

Constraints on DM lifetime (extragalactic)

Constraints on DM lifetime (extragalactic)

IceCube gives a more stringent bound in $10^{6}\,{\rm GeV} \lesssim m_{\rm dm} \lesssim 10^{11}\,{\rm GeV}$

Constraints on DM lifetime (Galactic)

Constraints on DM lifetime (Galactic)

Constraints on DM lifetime (Galactic)

Constraints on DM lifetime

Ando, Arimoto, KI, Macias '02

Galactic γ & Extragalactic ν give the most stringent constraints

<u>Outline</u>

- 1. Introduction
- 2. CRs from decaying heavy DM

3. Primordial curvature perturbations

4. Conclusion

Constraints on primordial curvature power spectrum

Byrnes, Cole, Patil '19

Constraints on primordial curvature power spectrum

Byrnes, Cole, Patil '19

Curvature perturbation

Host halos and subhalos

Subhalos accrete on a host halo

Curvature perturbation

Host halos and subhalos

Subhalos accrete on a host halo Tidal stripping Subhalos or satellite galaxies

Studied in semi-analytical way calibrated by N-body simulation

Hiroshima, Ando, Ishiyama '18

Mass distribution of subhalos

Curvature perturbation

Curvature perturbation

Host halos and subhalos

Subhalos accrete on a host halo

Subhalos or satellite galaxies

Curvature perturbation

Host halos and subhalos

Subhalos accrete on a host halo

Subhalos or satellite galaxies

Enhanced in high mass region model (a) A = 2.5e-0310¹² A = 1.6e-04A = 1.0e-05m²dN_{sh}/dm [M_☉] 10¹⁰ = 6.3e-07Α A = 4.0e-08 No bump 10¹⁰ , 10⁹ 10^{8} 104 10⁸ **10**¹⁰ 10⁶ 10² 1012 $m [M_{\odot}]$ Suppressed in low mass region

The observable: satellite counts

The observable: satellite counts

The observable: satellite counts

The observable: stellar stream

The observable: stellar stream

Ando, KI, Hiroshima '22

No tidal stripping

Tidal stripping model Jiang, van den Bosch '16

Tidal stripping model

Hiroshima, Ando, Ishiyama '18

Limit on \mathcal{P}_R , model:(a) Limit on \mathcal{P}_R , model:(b) Limit on \mathcal{P}_R , model:(c) 10^{-2} 10^{-2} 10^{-2} 10^{-3} 10-3 10-3 10⁻⁴ 4 Amplitude 10⁻⁵ $\begin{array}{r} 10^{-4} \\ \text{Wallitude} \\ 10^{-5} \\ 10^{-6} \end{array}$ 10^{-4} Amplitude 10^{-6} 10^{-6} 10^{-6} -yman-a ymanyman 10^{-7} 10^{-7} 10^{-7} μ -distortion — · μ-distortion µ-distortion This work: Satellite counts ($V_{max} > 4$ km/s) This work: Satellite counts ($V_{max} > 4$ km/s) This work: Satellite counts ($V_{max} > 4$ km/s) This work: Stellar stream ($m > 10^5 M_{\odot}$) This work: Stellar stream ($m > 10^5 M_{\odot}$) This work: Stellar stream ($m > 10^5 M_{\odot}$) 10^{-8} 10⁰ 10⁻⁸ 10 10³ 10³ 100 10³ 10² 104 10⁵ 10⁶ 10⁴ 10⁵ 106 10¹ 10² 10⁴ 106 10^{1} 10^{1} 10² 10⁵ *k* [Mpc⁻¹*h*] *k* [Mpc⁻¹*h*] *k* [Mpc⁻¹*h*]

No tidal model dependence

4. Conclusion

We have discussed indirect searches on heavy DM decay and primordial curvature perturbation

- Multimessenger astrophysical data, especially γ and ν data, is powerful tool to constrain heavy DM decay
- Tracking the evolution of DM substructure is a new technique to probe the primordial curvature perturbation

Backups

Energy distributions:

Energy distributions:

Propagation of CR nuclei

Photo-pion production

Stanev, Engel, Mücke, Protheroe, Rachen '00

Propagation of CR EM particles

Heiter, Kuempel, Walz, Erdmann '17

Absorption in ISRF+CMB

Esmaili, Serpico '15

Absorption in ISRF+CMB

\bar{p} flux in the Galaxy

 \rightarrow Constraints from AMS-02 becomes irrelevant for large $m_{\rm dm}$

e^+ flux in the Galaxy

Similar behavior to \bar{p} flux

 $p + \bar{p}$ flux

GZK effect can be seen in the extragalactic flux

 $p + \bar{p}$ flux

Galactic flux becomes dominant in the high energy region for large $m_{\rm dm}$

Integrated γ

Galactic flux is dominant in high energy region for large *m*_{dm}

Combined results

Variance

Curvature perturbation, variance, and host halo mass

Subhalo mass function

Cumulative maximum circular velocity function

<u>Cumulative number of subhalos, maximum circular velocity</u> <u>function, and boost factor</u>

