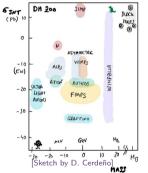
Dark matter: state of the art in neutrino searches

Sara Rebecca Gozzini


on behalf of the ANTARES and KM3NeT Collaborations

Instituto de Física Corpuscular (IFIC), University of Valencia and CSIC

DMNet - Heidelberg - September 15, 2022

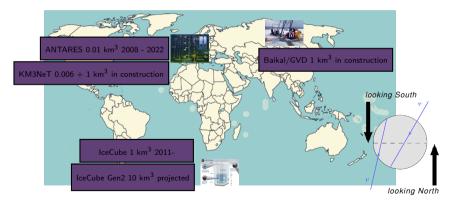
Unique assumption: the non-ordinary "substance" that makes up to a 27% of energy budget of the Universe comes in form of a **new elementary particle**.

- Neutral
- Stable on cosmological scales
- Relic abundance matches amount observed nowadays
- Not excluded by current searches
- No conflicts with BBN or stellar evolution

Mass and interaction strength: very unconstrained

WIMP miracle: interaction is of the size of known EW interaction. Regardless the question of its nature (is it EW or other?), this makes it possible for ν detectors to search for WIMP DM.

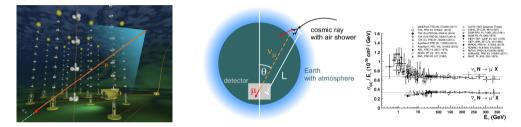
Target: astrophysical environment via neutrinos


Need to **predict fluxes** of high-energy ν from dark matter decay or pair-annihilation.

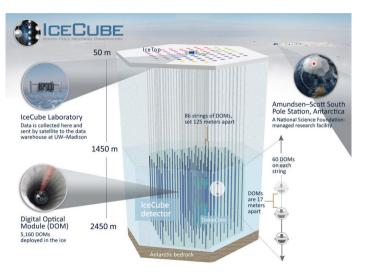
WIMP WIMP $\xrightarrow{\text{ANN}}$ interm. channel $\rightarrow m + X$ WIMP $\xrightarrow{\text{DEC}}$ interm. channel $\rightarrow m + X$

An instrument like ν telescope does not point to a specific sky direction \rightarrow best dark matter sources are: Galactic Centre (extended and relatively close) or Sun (very close)

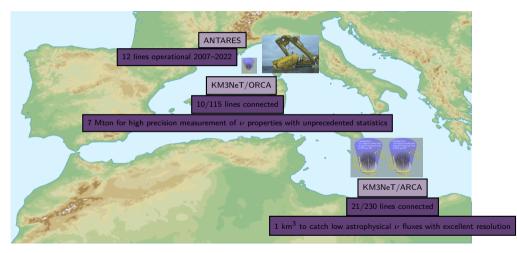
Large-volume ν Cherenkov telescopes


- Work at very faint signal rates instrumenting large reservoirs of transparent medium
- @ Remotely operated, almost 100% duty cycle, one unique data set (broad physics program)

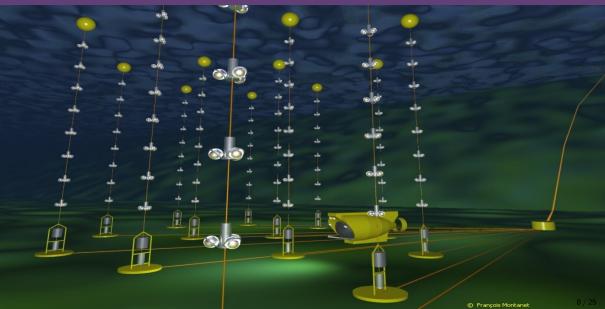
イロト イボト イヨト


Working principle

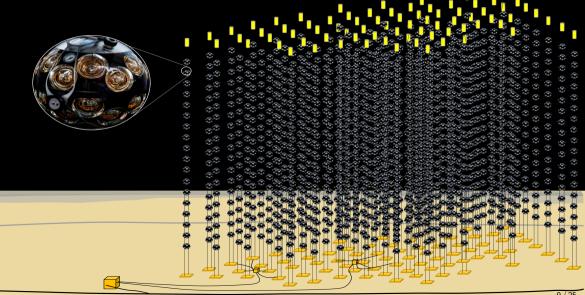
Look through the Earth for lepton tracks from $\nu \to I$ conversion. $\sigma_{\nu \to I} \sim 10^{-38}$ cm² at 1 GeV!


Water or ice? \rightarrow in Northern Hemisphere only water available.

- \bullet more noise: radioactive ${}^{40}K$ decays, natural luminescence in sea
- larger scattering length: better angular resolution
- maintainable (but moving slowly)



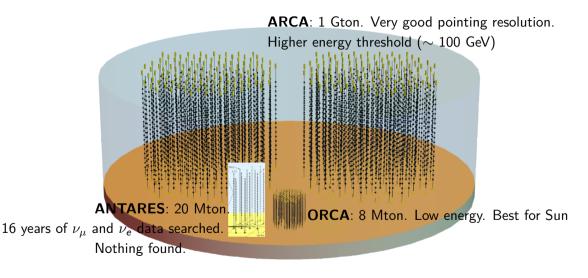
Mediterranean telescopes: ANTARES and KM3NeT


Cherenkov detectors instrumenting water with a grid of photomultipliers organised in lines

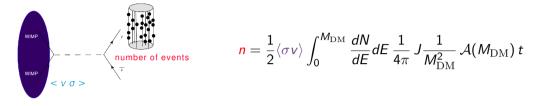
ANTARES: switched off in Feb. 2022 and dismantled in May-June 2022

KM3NeT: 19 lines ARCA + 8 lines ORCA connected

ANTARES



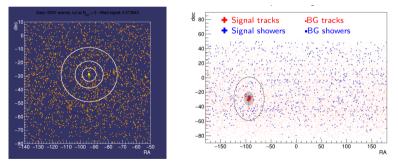
KM3NeT

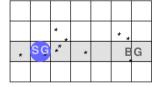


IceCube

Mediterranean telescopes to scale

Structure of ν indirect searches

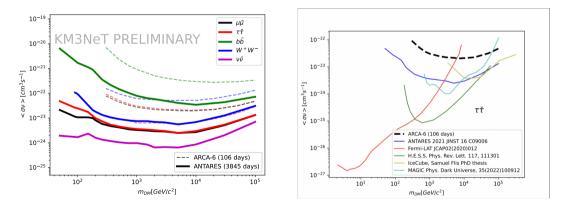



The probability for **one** process to happen is \propto velocity of projectile $\times \sigma$. Translate limit on flux into limit on velocity-averaged pair annihilation cross-section $\langle \sigma v \rangle$.

Neutrino telescopes reconstruct two kind of events • tracks (μ): fly-through, angular resolution down to 0.1°, ν_{μ} CC • cascades (e): contained, angular resolution $\sim 1 - 10^{\circ}$, ν_{e} CC or ν_{e} NC or ν_{μ} NC

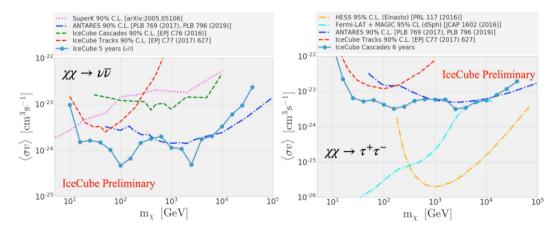
Structure of ν indirect searches

Signal = a cluster of n ν -induced events daugthers of dark matter pair annihilation process. Measurement = reconstructed arrival directions (follows J-factor?), and energy proxy (follows DM annihilation or decay spectra?) for both ν_{μ} and ν_{e}



Unbinned likelihood

Binned likelihood


Limits on pair annihilation of dark matter in the Galactic Centre

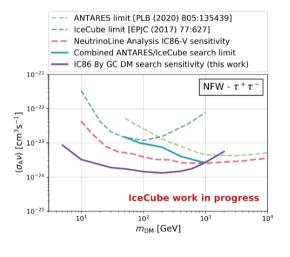
ANTARES data 2007 - 2020 is compatible with background [Phys.Lett B 805, 135439 (2020)] First sensitivities with 6-line configuration of ARCA.

Limits on pair annihilation of dark matter in the Galactic Centre

IceCube data is compatible with background [figure from ICHEP 2022]

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目目 のへで

Combined ANTARES + IceCube search


Region where the limits of ANTARES and IceCube are comparable

 $50 \text{GeV} \le E \le 1 \text{TeV}$

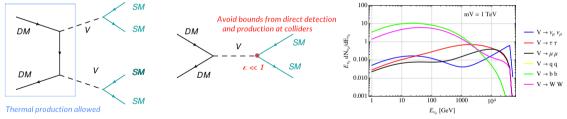
Two-component mixture model to combine the sensitivities with one minimisation parameter

$$\mathcal{L}_{comb} = \prod_{k=\mathcal{A},I} \mathcal{L}_k(\mu_k)$$

Joint unblinding with 3 years of IceCube and 9 years ANTARES. Further explansion of IceCube data set to 8 years was analysed meanwhile.

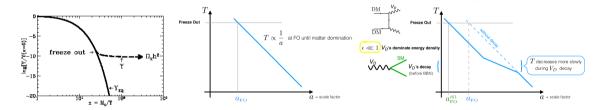
イロト イボト イヨト イヨト

Combined search using $u + \gamma$


ANTARES/ KM3NeT are participating in a joint search with MAGIC, HESS, VERITAS, Fermi.

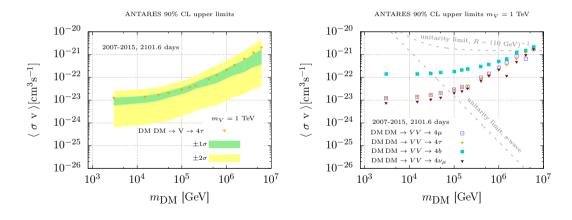
No evidence for WIMP at the GeV-TeV scale; where to search next?

Above 10-100 TeV, in line with recent interest for BSM physics in heavy sectors at colliders


- Unitarity bound on the dark matter mass naturally evaded with a modified cosmology
- Spectra of relevance for experiments can be computed from 'boosted' PPPC [JCAP 2019 014]

The ν signal at ANTARES arises from the annihilation of DM pairs into two mediators, then decaying into SM particles that produce ν s via decays and showering.

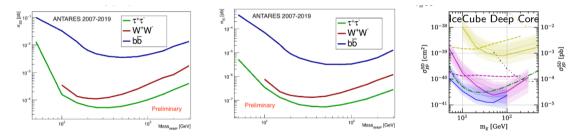
Standard cosmological evolution: $\Omega_{\rm DM} \propto \frac{1}{\sigma v}$.


Secluded: universe at freeze-out is smaller \Rightarrow the same amount of DM is later more diluted $\Rightarrow \sigma v (DM DM \rightarrow VV)$ smaller $\Rightarrow DM$ can be heavier

Standard WIMP mass constraint at $m_{\rm DM} = \mathcal{O}(100)$ TeV [PRL 64 (1990) 615] can be evaded in new cosmological scenario.

Limits on heavy secluded dark matter

Upper limits span for first time dark matter masses up to 6 PeV [JCAP06(2022)028]



・ロ・・団・・山・・山・・日・

Search for dark matter in the Sun

- In equilibrium between capture and annihilation
- Sensitive at low velocities (= easier capture)
- Clean: if signal \rightarrow direct interpretation (astro bg well known)

Sun has known isotopic abundance \Rightarrow sensitive to WIMP-nucleon cross section for spin-dependent and spin-independent case (odd or even atomic number)

Neutrino telescopes are very versatile and adapt to different search channels

WIMP searches

- ANTARES has searched for dark-matter induced ν from the Galactic Centre using all-flavour data from 2007 \rightarrow Feb. 2020. No dark matter. [Phys.Lett B 805, 135439 (2020)]
- Search for dark matter annihilations in the Sun and in the Earth

Test of other dark matter models

• Search for heavy DM in secluded scenarios in ANTARES data [JCAP06(2022)028]

ANTARES decommissioning

ANTARES decommissioning

ANTARES decommissioning

