Combined Limits from Dwarf Spheroidal Galaxies

The 2nd DMNet International Symposium 2022.09.15

<u>Elisa Pueschel</u>, Celine Armand, Eric Charles, Mattia di Mauro, Chiara Giuri, J. Patrick Harding, Daniel Kerszberg, Tjark Miener, Emmanuel Moulin, Louise Oakes, Vincent Poireau, Javier Rico, Lucia Rinchiuso, Daniel Salazar-Gallegos, Kirsten Tollefson, Benjamin Zitzer for the Fermi-LAT, HAWC, H.E.S.S., MAGIC, and VERITAS collaborations

HELMHOLTZ Young Investigators

Indirect Searches for Dark Matter Annihilation

Astrophysical signal from annihilation or decay to standard model particles

We are focused on final-state gamma rays

The Gamma-ray Searchers

Energy range: 100 MeV to ~1 TeV Large field of view

H.E.S.S.

Energy range: ~1 TeV - 100 TeV Large field of view Imaging atmospheric Cherenkov telescope arrays (IACTs) Energy range: ~30 GeV to ~100 TeV Field of view: several degrees

Why Dwarf Spheroidal Galaxies?

- Milky Way satellites: nearby (~20-200 kpc)
- Classic (thousands of bright stars) and Ultrafaint (tens of bright stars)
 - Multiple objects = less sensitivity to mis-modeling of single object
- Large mass to light ratios: ~O(1000) M_{\odot}/L_{\odot}
- Low astrophysical background (no known gamma-ray emitters)
- Ideal target for IACTs due to modest angular extension

Dwarf Spheroidal Galaxies: Still Challenging

- J-factor estimation major source of uncertainty
- Differences of approach in literature
- Quantify uncertainty considering two independent calculations
 - Geringer-Sameth et al. 2015 (arXiv:1408.0002)
 - Bonnivard et al. 2015 (arXiv:1407.7822, arXiv:1504.02048)
 - Different choices for DM density profile, velocity anisotropy, light profile, consideration of systematics

Good agreement for some objects, significant differences for others

Former State of the Art

 10^{-18}

...but then we have five upper limit curves from the gamma-ray community...

 E^2 x Flux Sensitivity (erg cm⁻² s⁻¹)

Observation Summary

	Fermi-LAT	HAWC			
Source name	Exposure (10^{11} sm^2)	$ \Delta \phi $ (°)	IACT	Zenith (°)	Time exposure (h)
Boötes I	2.6	4.5	VERITAS	15 - 30	14.0
Canes Venatici I	2.9	14.6	—	—	—
Canes Venatici II	2.9	15.3	—	—	—
Carina	3.1	—	H.E.S.S.	27 - 46	23.7
Coma Berenices	2.7	4.9	H.E.S.S.	$\bar{4}\bar{7}-\bar{4}\bar{9}$	11.4
			MAGIC	5 - 37	49.5
Draco	3.8	38.1	MĀGĪC -	$\bar{29} - \bar{45}$	$5\bar{2}.\bar{1}$
			VERITAS	25 - 40	49.8
Fornax			H.E.S.S.	$\bar{1}1 - \bar{2}5$	$\bar{6}.\bar{8}$
Hercules	2.8	6.3	—	—	—
Leo I	2.5	6.7	—	—	—
Leo II	2.6	3.1	—	—	—
Leo IV	2.4	19.5	_	—	_
Leo V	2.4	—	_	—	—
Leo T	2.6	—	_	—	—
Sculptor	2.7	—	H.E.S.S.	10 - 46	11.8
Segue I	2.5	2.9	MĀGĪC -	$\bar{1}\bar{3}-\bar{3}\bar{7}$	158.0
			VERITAS	15 - 35	92.0
Segue II	$\overline{2.7}$				_
Sextans	2.4	20.6	—	—	—
Ursa Major I	3.4	32.9	—	—	—
Ursa Major II	4.0	44.1	MAGIC	35 - 45	94.8
Ursa Minor	4.1	—	VERITAS	35 - 45	60.4

- 20 dwarf spheroidal galaxies observed, including classical and ultrafaint objects
- ~625 hours IACT, 10 years Fermi-LAT, ~1000 days HAWC observations
- Inexact mapping to previous publications: some reanalysis, modified target selection

(More) Common Approach

- Each instrument performs likelihood analysis with internal software
 - VERITAS: unbinned maximum likelihood
 - Other instruments: binned maximum likelihood
 - Analysis choices vary between instruments (e.g. treatment of point spread function, size of signal region...)
- Common statistical format
 - Share high-level data: test statistic versus DM annihilation cross section, calculated at common set of masses
- Common expected signal inputs
 - Expected photon spectrum from Cirelli et al. 2011 (*arXiv:1012.4515*)
 - DM annihilation to $W^+W^-, Z^+Z^-, t\bar{t}, b\bar{b}, \tau^+\tau^-, \mu^+\mu^-, e^+e^-$
 - Marginalize over two sets of J-factors
 - Geringer-Sameth et al. 2015
 - Bonnivard et al. 2015

Joint Likelihood Analysis

NdSphs

Test statistic shared per instrument, per dwarf and per annihilation channel v = nuisance parameters D = gamma-ray observations

Partial joint likelihood - product of all dwarves per instrument

$$\mathcal{L}\left(\langle \sigma v \rangle; \boldsymbol{\nu} \mid \boldsymbol{\mathcal{D}}_{\mathrm{dSphs}}\right) = \prod_{l=1}^{\mathrm{dSphs}} \mathcal{L}_{\mathrm{dSph},l}\left(\langle \sigma v \rangle; J_l, \boldsymbol{\nu_l} \mid \boldsymbol{\mathcal{D}_l}\right) \times \mathcal{J}_l\left(J_l \mid J_{l,\mathrm{obs}}, \sigma_{\log J_l}\right)$$

Separate term in likelihood constraining J-factor

$$\mathcal{J}_{l}\left(J_{l} \mid J_{l,\text{obs}}, \sigma_{\log J_{l}}\right) = \frac{1}{\ln\left(10\right)J_{l,\text{obs}}\sqrt{2\pi}\sigma_{\log J_{l}}} \exp\left(-\frac{\left(\log_{10} J_{l} - \log_{10} J_{l,\text{obs}}\right)^{2}}{2\sigma_{\log J_{l}}^{2}}\right)$$

Total joint likelihood - product of partial joint likelihoods from all instruments

Joint Likelihood Analysis

- Two independent combination codes developed
 - gLike: https://doi.org/10.5281/ zenodo.4028908
 - LklCombiner: https://doi.org/10.5281/ zenodo.4450884
- No signal observed; extract 95% confidence level limits on DM annihilation cross section

Results

Example bosonic, hadronic and leptonic channels (from 7 channels total)

Consistency between observed and expected limits

Interpretation of Results

- Fermi-LAT dominates below 300 GeV
- Above 300 GeV balance of contributions depends on channel and DM particle mass
- IACTs take an increasing role in leptonic channels with increasing DM particle mass
 - Contribute to hadronic channels above ~2 TeV
- HAWC contributes to leptonic channels above ~10 TeV

Impact of J-factor Uncertainty

- Bonnivard et al. J-factors consistently produce more constraining limits
 - Larger J-factors for majority of objects
 - Factor 3-5 difference for bosonic and hadronic channels
 - Factor 2-6 difference for leptonic channels
 - Peak differences for ~TeV DM masses

Where to Next?

- New data
 - Instruments have taken/analyzed more data beyond datasets here
- New channels
 - Annihilation to gamma rays or neutrinos
 - Latter case combine with IceCube, ANTARES
 - Decaying dark matter
- New instruments
 - Combination with LHAASO (higher energy gamma rays), CTA, SWGO...
- New interpretations!

Thanks!

Imagining Atmospheric Cherenkov Telescopes

J-Factor Comparison

Name	Distance	l, b	$\log_{10} J (\mathcal{GS} \text{ set})$	$\log_{10} J \left(\mathcal{B} \text{ set} \right)$
Doötas I	(Kpc)		$100_{10}(367 \text{ cm} \text{ sr})$	1000000000000000000000000000000000000
Booles I	00	358.08, 09.02	$18.24_{-0.37}$	$18.80_{-0.61}$
Canes Venatici I	218	74.31, 79.82	$17.44_{-0.28}^{+0.37}$	$17.63^{+0.50}_{-0.20}$
Canes Venatici II	160	$113.58,\ 82.70$	$17.65\substack{+0.45 \\ -0.43}$	$18.67^{+1.54}_{-0.97}$
Carina	105	260.11, -22.22	$17.92\substack{+0.19\\-0.11}$	$18.02\substack{+0.36\\-0.15}$
Coma Berenices	44	$241.89,\ 83.61$	$19.02\substack{+0.37 \\ -0.41}$	$20.13^{+1.56}_{-1.08}$
Draco	76	$86.37, \ 34.72$	$19.05\substack{+0.22\\-0.21}$	$19.42_{-0.47}^{+0.92}$
Fornax	147	237.10, -65.65	$17.84_{-0.06}^{+0.11}$	$17.85_{-0.08}^{+0.11}$
Hercules	132	$28.73, \ 36.87$	$16.86\substack{+0.74\\-0.68}$	$17.70^{+1.08}_{-0.73}$
Leo I	254	$225.99, \ 49.11$	$17.84_{-0.16}^{+0.20}$	$17.93\substack{+0.65\\-0.25}$
Leo II	233	$220.17,\ 67.23$	$17.97\substack{+0.20\\-0.18}$	$18.11\substack{+0.71 \\ -0.25}$
Leo IV	154	265.44, 56.51	$16.32^{+1.06}_{-1.70}$	$16.36^{+1.44}_{-1.65}$
Leo V	178	261.86, 58.54	$16.37\substack{+0.94 \\ -0.87}$	$16.30^{+1.33}_{-1.16}$
Leo T	417	$214.85, \ 43.66$	$17.11\substack{+0.44\\-0.39}$	$17.67\substack{+1.01 \\ -0.56}$
Sculptor	86	287.53, -83.16	$18.57\substack{+0.07\\-0.05}$	$18.63_{-0.08}^{+0.14}$
Segue I	23	220.48, 50.43	$19.36\substack{+0.32 \\ -0.35}$	$17.52^{+2.54}_{-2.65}$
Segue II	35	149.43, -38.14	$16.21^{+1.06}_{-0.98}$	$19.50^{+1.82}_{-1.48}$
Sextans	86	$243.50, \ 42.27$	$17.92^{+0.35}_{-0.29}$	$18.04\substack{+0.50 \\ -0.28}$
Ursa Major I	97	159.43, 54.41	$17.87\substack{+0.56 \\ -0.33}$	$18.84_{-0.43}^{+0.97}$
Ursa Major II	32	$152.46,\ 37.44$	$19.42\substack{+0.44\\-0.42}$	$20.60^{+1.46}_{-0.95}$
Ursa Minor	76	$104.97, \ 44.80$	$18.95_{-0.18}^{+0.26}$	$19.08^{+0.21}_{-0.13}$