

Scope of the problem:

'They're just finalizing the spring cleaning before the next collider season begins'

Expression of the problem

Basic problem: All interesting theories are multi-parameter models.

Expression of the problem

Basic problem: All interesting theories are multi-parameter models.

Expression of the problem

Basic problem: All interesting theories are multi-parameter models.

Basic questions: Which theories and which parameter sub-spaces are preferred given the data?

The Bayesian reasoning

Given a model with parameters θ , and data x, Bayes' theorem is

$$p(\theta \mid x) \sim p(x \mid \theta) p(\theta)$$

Posterior probability Likelihood Prior knowledge of θ given x (contribution on the model from data)

Appealing features:

- Has strong theoretical foundations, is very general and conceptually straightforward
- Systematic learning from data through a recursive algorithm: posterior at a given stage becomes prior for the next.
- Coherent way to incorporate uncertainties regardless of their origin
- Given just the posterior, one can extract details such as point estimates, credible regions, etc.
- Can rank models according to their concordance with observation.

The question of priors - I

It is not possible to make progress without making some assumptions about the nature of the physics question:

- ✓ To model backgrounds in a data-driven way, we assume that signal << background in the background region
 </p>
- ✓ The LHC was designed assuming that BSM physics will be revealed at the TeV scale and will have high p_T signatures!

We use priors to incorporate our knowledge about a given model.

The question of "what prior to choose" arises when we lack intuition about the parameter space of the model. Defining suitable priors is a critical task!

The question of priors - II

Different priors will lead to different results.

The discrepancy among results obtained using different priors has been viewed, by some, as problematic. But this is a conceptual advantage that provides a way to assess whether the data are sufficient to make firm conclusions.

Current BSM studies generally adopt flat (or log) priors on the parameters. However:

- Suppose we make the transformation $\theta \to 1/\alpha$. The new prior becomes $\sim 1/\alpha^2$. Why choose the prior to be flat in θ rather than in α ?
- Flat priors can be successfully used for single parameter models, but they can easily lead to pathological results in multi-parameter cases.

Therefore we need a formal way to construct priors.

Reference priors - I

In 1979, J. Bernardo introduced a formal rule to construct what he called reference priors. By construction, a reference prior contributes as little information as possible relative to the data.

A reference prior $\pi(\theta)$ maximizes the difference

$$D[\pi, p] \equiv \int p(\theta|x) \ln \frac{p(\theta|x)}{\pi(\theta)} d\theta$$

between the prior $\pi(\theta)$ and the posterior $p(\theta|x)$. D is called the Kullback-Leibler divergence. It is a measure of the information gained from the experiment.

But maximizing D is not quite right because it would yield a prior that depends on the observations n!

Reference priors - II

Reference analysis averages over all possible observations from K repetitions of the experiment:

$$I_K[\pi] \equiv \sum_{x_1=0}^{\infty} \cdots \sum_{x_K=0}^{\infty} m(x_{(K)}) D[\pi, p(\theta|x_{(K)})],$$

in the limit $K \rightarrow \infty$, where

$$m(x_{(K)}) = \int p(x_{(K)}|\theta) \pi(\theta) d\theta,$$
 with $p(x_{(K)}|\theta) = \prod_{i=1}^{K} p(x_i|\theta),$

is the marginal density for K experiments.

The reference prior is the $\pi(\theta)$ that maximizes $I_{\kappa}[\pi]$, in the limit $K \to \infty$.

Reference priors - III

For the cases where the posterior densities are asymptotically normal, that is, become Gaussian as more data are included, the reference prior coincides with Jeffreys' prior:

$$\pi(\theta) = \sqrt{\mathbb{E}\left[-rac{d^2 \ln p(x|\theta)}{d\theta^2}
ight]}$$

Therefore, constructing reference priors for single parameter scenarios is straightforward.

Direct generalizations to multi-parameter scenarios exist, but they are computationally demanding. Here we will propose a different way to approach the problem that is computationally tractable.

Usage of reference priors

Using the reference prior formalism, we can

- ✓ Rank new physics models according to their compatibility with observations independent of their dimensionality
- ✓ Estimate parameters of the new physics models
- ✓ Design an optimal analysis for a given model and given integrated luminosity
- **√** ...

The plan

The Idea: Construct a proper posterior density for a simple experiment, starting with a reference prior, and map the posterior density into the parameter space of the model under investigation.

- We use the example of a single count experiment for which the signal and background model is well understood, and construct a reference prior $\pi(s)$ for the signal count s.
- Using $\pi(s)$, we obtain the posterior density p(s|N), where N is the observed event count (background + signal).
- We use a "look-alike principle" to map the posterior density p(s|N) to a prior $\pi(\theta)$ on the model parameter space.
- The prior $\pi(\theta)$ can now be used to continue the inference chain, recursively incorporating additional measurements x to get to the posterior $p(\theta|x)$.

Simple mSUGRA example

- We illustrate our approach by investigating the mSUGRA scenario with
 - free parameters: $150 < m_0 < 600$ and $0 < m_{1/2} < 1500$
 - fixed parameters: $A_0 = 0$, $\tan \beta = 10$ and $\mu > 0$
- We use the CMS SUSY benchmark point LM1 with

$$m_0 = 60$$
, $m_{1/2} = 250$, $A_0 = 0$, $\tan \beta = 10$, $\mu > 0$

as the "true state of nature", which will provide the observed count N.

- For LM1 and for each point in a grid in the m_0 - $m_{1/2}$ space, we generate 1000 7 TeV LHC events (PYTHIA) and simulate those with an approximate CMS detector response (modified PGS)
- We implement a multijets + missing ET selection and obtain the event yields for the LM1 and for the grid points. For background, we get the numbers from an existing CMS analysis.
- We quote results for 1pb⁻¹, 100pb⁻¹ and 500pb⁻¹.

The single count model: Construction - I

Consider a counting experiment where the signal is due to new physics:

BR: The BG region (sig << BG)

Y: Observed count in BR

μb: Expected BG/count in BR

b: exp BG in BR / exp BG in SR

SR: The signal region

N: Observed count in SR

s: Expected signal in SR

μ: Expected BG in SR

 $n = s + \mu$: Expected count in SR

In SR, likelihood for observing N events is given by the Poisson distribution

$$p(N|\mu, s) = \frac{(\mu + s)^N}{N!} e^{-(\mu + s)}$$

To get the posterior

$$p(s|N) = p(N|s)\pi(s) = \int p(N|\mu, s)\pi(\mu, s)d\mu$$

we need the prior $\pi(\mu,s)$ which we factorize as: $\pi(\mu,s)=\pi(\mu|s)$ $\pi(s)$ We further assume that $\pi(\mu|s)=\pi(\mu)$, the prior on μ is independent on s.

The single count model: Construction - II

Consider a counting experiment where the signal is due to new physics:

BR: The BG region (sig << BG)

Y: Observed count in BR

μb: Expected BG/count in BR

b: exp BG in BR / exp BG in SR

SR: The signal region

N: Observed count in SR

s: Expected signal in SR

μ: Expected BG in SR

 $n = s + \mu$: Expected count in SR

In BR, likelihood for observing Y events is given by the Poisson distribution

$$p(Y|b,\mu) = p(Y|\mu) = \frac{\left(b\mu\right)^Y}{Y!} e^{-(b\mu)} \qquad \text{b is a known constant}$$

To get the posterior $\ p(\mu|Y)=\pi(\mu)=p(Y|\mu)\pi_0(\mu)$

we need the prior $\pi_0(\mu)$, "the initial prior". We get this by calculating the reference prior (Jeffrey's prior) using the likelihood $p(Y|\mu)$.

This gives $\pi_0(\mu) \sim 1/\sqrt{\mu}$. From $\pi_0(\mu)$ and $p(Y|\mu)$ we obtain

$$p(\mu|Y) = \pi(\mu) = \frac{b(b\mu)^{Y-1/2}}{\Gamma(Y+1/2)}e^{-b\mu}$$

The single count model: Likelihood

We marginalize $p(N | \mu, s)$ over μ to get the likelihood:

$$p(N \mid s) = \int p(N \mid \mu, s) \, \pi(\mu) \, d\mu,$$

$$= \int \frac{(\mu + s)^N}{N!} \, e^{-\mu - s} \, \frac{b(b\mu)^{y - 1/2}}{\Gamma(y + 1/2)} \, e^{-b\mu} \, d\mu,$$

$$= e^{-s} \left[\frac{b}{b + 1} \right]^{y + \frac{1}{2}} \, \sum_{k=0}^{N} v_{Nk} \, \frac{s^k}{k!},$$
where $v_{Nk} \equiv \frac{\Gamma(y + \frac{1}{2} + N - k)}{\Gamma(y + \frac{1}{2}) \, (N - k)!} \, \left[\frac{1}{b + 1} \right]^{N - k}.$

Having reduced the likelihood to a single parameter, we can use the 1-parameter algorithm to construct the reference prior $\pi(s)$ (Jeffreys' prior) for this likelihood.

The single count model: The prior

Reference prior on s calculated from likelihood p(N|s):

$$\pi(s) \propto \sqrt{e^{-s} \sum_{n=0}^{\infty} \frac{[T_n^0 - T_n^1/s]^2}{T_n^0}},$$

where
$$T_n^m(s) \equiv \sum_{k=0}^n k^m v_{nk} \frac{s^k}{k!}$$
 for $m = 0, 1$.

The single count model: The posterior

$$p(s|n) = p(n|s) \pi(s) / \int_0^\infty p(n|s) \pi(s) ds.$$

Mapping to multi-dimensional SUSY space - I

p(s|N) is a proper density based on a reference prior, and hence is invariant under one-to-one transformations of s.

Model parameters θ are related to signal count s as s = f(θ).

We would like to find the reference prior $\pi(\theta)$ induced on the model parameter space by p(s|N).

To find $\pi(\theta)$, we make use of a generic probability statement in two parts:

1st part - Mapping to regions: p(s|N) and $\pi(\theta)$ should be consistent in

the following sense

Mapping to multi-dimensional SUSY space - II

 2^{nd} part – Mapping to points: The expected signal s is the same for all points in Θ_{δ} . Therefore, in that sense, the points in Θ_{δ} are indistinguishable.

We propose, therefore, assigning the same probability density to every point in Θ_{δ} .

$$\pi(\theta) = p(s|N) / \int_{\mathbb{S}} \frac{d\sigma(\theta)}{|\nabla f|} \qquad s - f(\theta) = 0.$$
 surface term

For simplicity in this study the surface term was neglected, because we expect it to be a much gentler function compared to p(s|N).

Reference prior $\pi(\theta)$ on the mSUGRA space

The new Bayesian procedure is consistent in that the posterior/prior converge to the correct subspace of the parameter space.

Adding the EW/flavor observables

We continue the inference chain by incorporating the likelihood

$$\mathcal{L}(\vec{\alpha}|m_0, m_{1/2}) \propto \prod_i e^{-\frac{(\alpha_i(m_0, m_{1/2}) - m_i)^2}{2\sigma_i^2}}$$

for a set of EW/flavor observables I, that are BR(b -> s γ), R(BR(b -> $\tau \nu$)), BR(b -> D $\tau \nu$), BR(b -> D $\tau \nu$), BR(b -> D $\tau \nu$), BR(b -> $\tau \nu$), BR(D_s -> $\tau \nu$), BR(D_s -> $\tau \nu$) and $\Delta \rho$.

Since the nature is LM1, we used the LM1 values for the observables along with the measured uncertainties.

5D SUGRA example

We use two simple extensions of mSUGRA, each with 5 free parameters:

Model 1: Non-universal m0(1,2), with parameterization:

$$m_0 = m_0(3) = m_{Hu,d}, m_0(1,2), m_{1/2}, A_0, \tan\beta, \mu > 0$$

Model 2: Non-universal M3, with parameterization:

$$m_0$$
, $m_{1/2}$, M3, A_0 , $tan\beta$, $\mu > 0$

The "true state of nature (TSN)" is chosen from Model 1, and is defined as

$$m_0 = 1000$$
, $m_0(1,2) = 60$, $A_0 = 0$, $tan\beta = 10$

5D SUGRA example - method

- The expected signal s is given by
 - $s = cross section \times efficiency \times integrated luminosity.$
- The "observed" count N is obtained as the sum of the expected signal for the true state of nature and the expected background obtained from the CMS analysis.
- We generate a sample of points θ from the posterior p(s|N), given that $s = f(\theta)$, using a Markov Chain Monte Carlo method.
- In general, the efficiency is a function of the parameter space of the model. It is obtained by performing the analysis on a given point θ . This requires simulating a sufficient number of events for θ .
- Since computing this efficiency with official tools is time consuming, we have explored the possibility of using a constant efficiency and reweighting the points afterwards with p(s|N) / p(s_{const})|N).

Mapping to the 5D SUGRA space - I

Plots show the distributions of the points sampled by the MCMC, before the corrective weights are applied.

Mapping to the 5D SUGRA space - II

Distribution after weighting, which gives the prior $\pi(\theta)$, which is calculated using 100pb^{-1} data. Then we recursively add information from more data through multiplying with the likelihood of data given the signal count.

Adding the EW/flavor observables

Distributions after adding the input from EW/flavor observables obtained through multiplying by the likelihood of EW/flavor energy data.

Diagnosis

The relevant subspace is not being sampled efficiently because of the use of a constant efficiency.

To do the MCMC more efficiently, we need to sample from the p(N|s) calculated using the correct efficiency.

This means we have to calculate the efficiencies during the MCMC. To be able to do this, we need to have **VERY FAST AND ACCURATE SIMULATION TOOLS!**

Summary and outlook

- We proposed a way to construct multi-dimensional priors from the posterior density for a simple experiment. The key idea is to start with a reference prior, and map the posterior density into the parameter space of the model under investigation.
- It is necessary to use the correct efficiencies to ensure efficient sampling of the parameter space. This requires the use of fast and accurate event simulators.
- The single count model we used for building the reference prior can be replaced by any for which the signal and background modeling is well-understood.
- Reference analysis provides a procedure for ranking models (i.e., hypothesis testing), parameter estimation, etc.
- We need to find observables that will break the degeneracy in the look-alike regions.

