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‘They're just finalizing the spring cleaning before the next collider season begins'



Expression of the problem

A

Basic problem: All interesting theories are multi-parameter models.
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Expression of the problem

A

Basic problem: All interesting theories are multi-parameter models.
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Basic questions: Which theories and which parameter sub-spaces
are preferred given the data?

Theory of



The Bayesian reasoning

Given a model with parameters 6, and data x, Bayes’ theorem is

p(B1x)~ p(x16)p(6)

Posterior probability  Likelihood  Prior knowledge
of O given x  (contribution on the model
from data)

Appealing features:

* Has strong theoretical foundations, is very general and conceptually
straightforward

* Systematic learning from data through a recursive algorithm: posterior
at a given stage becomes prior for the next.

* Coherent way to incorporate uncertainties regardless of their origin

* Given just the posterior, one can extract details such as point estimates,
credible regions, etc.

* Can rank models according to their concordance with observation.
11



The question of priors - |

It is not possible to make progress without
making some assumptions about the nature of
the physics question:

v To model backgrounds in a data-driven way, we assume that
signal << background in the background region

v The LHC was designed assuming that BSM physics will be
revealed at the TeV scale and will have high p; signatures!

We use priors to incorporate our knowledge about a given model.

The question of “what prior to choose” arises when we lack intuition
about the parameter space of the model. Defining suitable priorsis a
critical task!



The question of priors - |l

A

Different priors will lead to different results.

The discrepancy among results obtained using
different priors has been viewed, by some, as
problematic. But this is a conceptual advantage
that provides a way to assess whether the data
are sufficient to make firm conclusions.

Current BSM studies generally adopt flat (or log) priors on the parameters.
However:

* Suppose we make the transformation 6 -> 1/a. The new prior
becomes ~1/a’. Why choose the prior to be flat in 8 rather than in a?

* Flat priors can be successfully used for single parameter models, but
they can easily lead to pathological results in multi-parameter cases.

Therefore we need a formal way to construct priors.
15



Reference priors - |

In 1979, J. Bernardo introduced a formal rule to construct what he
called reference priors. By construction, a reference prior contributes
as little information as possible relative to the data.

A reference prior 11(8) maximizes the difference

p(f|x)

=

D|m, p| E/p(€|$) In

between the prior n(B) and the posterior p(8|x). D is called the
Kullback-Leibler divergence. It is a measure of the information gained
from the experiment.

But maximizing D is not quite right because it would yield a prior that
depends on the observations n!



Reference priors - I

Reference analysis averages over all possible observations from K
repetitions of the experiment:

IK[TT] = Z Z m(I{K}) D[Wﬁﬁ(mi"(ﬁ}»

in the limit K -> ==, where

m(:.r{_.rf})

fP(I(H; 0) m(8)de,

is the marginal density for K experiments.

with p(:}:”{} 0)

The reference prior is the n(6) that maximizes I [rt], in the limit K -> e=.



Reference priors - |l

For the cases where the posterior densities are asymptotically normal,
that is, become Gaussian as more data are included, the reference
prior coincides with Jeffreys’ prior:

A [_dﬂ lnd;;gﬂﬂ]]

Therefore, constructing reference priors for single parameter scenarios
is straightforward.

Direct generalizations to multi-parameter scenarios exist, but they are
computationally demanding. Here we will propose a different way to
approach the problem that is computationally tractable.



Usage of reference priors

Using the reference prior formalism, we can

v Rank new physics models according to their compatibility with
observations independent of their dimensionality
v’ Estimate parameters of the new physics models

v Design an optimal analysis for a given model and given integrated
luminosity

v
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] The plan

l

The Idea: Construct a proper posterior density for a simple
experiment, starting with a reference prior, and map the posterior
density into the parameter space of the model under investigation.

* We use the example of a single count experiment for which the signal
and background model is well understood, and construct a reference
prior mi(s) for the signal count s.

* Using 1t(s), we obtain the posterior density p(s|N), where N is the
observed event count (background + signal).

* We use a “look-alike principle” to map the posterior density p(s|N) to
a prior t(6) on the model parameter space.
* The prior (B) can now be used to continue the inference chain,

recursively incorporating additional measurements x to get to the
posterior p(0 |x).






Simple mSUGRA example

* We illustrate our approach by investigating the mSUGRA scenario with
* free parameters: 150 < m, < 600 and 0 < m,,, < 1500
* fixed parameters: A, =0, tanB=10and u>0
* We use the CMS SUSY benchmark point LM1 with
m, =60, m,, =250, A;=0, tanf =10, p>0
as the “true state of nature”, which will provide the observed count N.

* For LM1 and for each pointin a grid in the m;-m, , space, we generate
1000 7 TeV LHC events (PYTHIA) and simulate those with an approximate
CMS detector response (modified PGS)

* We implement a multijets + missing ET selection and obtain the event
yields for the LM1 and for the grid points. For background, we get the
numbers from an existing CMS analysis.

* We quote results for 1pb?, 100pb* and 500pb™.



The single count model: Construction - |

Jh Consider a counting experiment where the signal is due to new physics:
count

SR: The signal region

BR: The BG region (sig << BG) N: Observed count in SR

Y: Observed count in BR s: Expected signal in SR

ub: Expected BG/count in BR 1: Expected BG in SR

b: exp BG in BR / exp BG in SR °R s n = s+: Expected count in SR
Variable x

In SR, likelihood for observing N events is given by the Poisson distribution

N
p(N|p,s) = G J,:;) e~ (uts)

To get the posterior
p(s|N) =p(N|s)m(s) = /p(f\"lm s)m(p, s)dp

we need the prior 7(yt, s) which we factorize as: m(u, s) = m(p|s) 7(s)

We further assume that m(pu|s) = m(u), the prior on pis independent
on s.



The single count model: Construction - ||

Jh Consider a counting experiment where the signal is due to new physics:
count

SR: The signal region

BR: The BG region (sig << BG) N: Observed count in SR

Y: Observed count in BR s: Expected signal in SR

ub: Expected BG/count in BR 1: Expected BG in SR

b: exp BG in BR / exp BG in SR °R a n = s+: Expected count in SR
Variable x

In BR, likelihood for observing Y events is given by the Poisson distribution
-
p(Y|b, i) = p(Y|p) = %E_“’m b is a known constant
To get the posterior p(u|Y) = w(u) = p(Y |p)mo( 1)
we need the prior mo(/t), “the initial prior”. We get this by calculating
the reference prior (Jeffrey’s prior) using the likelihood p(Y 1) .

This givesmo(p) ~ 1/\/pt . Frommy(p) and p(Y |) we obtain
b(bp)Y —1/2

p(ulY) = 7(p) = A ;,Q)e—*’“




J&?’[‘ The single count model: Likelihood

We marginalize p(N |, s) over 1 to get the likelihood:
pNIs) = [ BN ,s) 7o) dp

dyu,

/{Wrﬁ}‘"‘” s O L,
N P(y+1/2) ¢

y+3 & .i.*

al. |

N
k=
F(y-F%JrN—I;} 1 R
D(y+1) (N—Fk)! |[b+1 |

b+l

where vy

Having reduced the likelihood to a single parameter, we can use the

1-parameter algorithm to construct the reference prior mnt(s) (Jeffreys’
prior) for this likelihood.
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prior w(s)

The single count model: The prior

Reference prior on s calculated from likelihood p(N|s) :

w(s)

where T7"(s)
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The single count model: The posterior

p(s|n) = p(n|s) ?r(s),f/{j p(n|s) m(s) ds.

p(sn) for the single count model pis|n) for the single count model pisin) for the single count madel
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Mapping to multi-dimensional SUSY space - |

p(s|N) is a proper density based on a reference prior, and hence is invariant
under one-to-one transformations of s.

Model parameters 0 are related to signal count s as s = f(0).

We would like to find the reference prior rt(8) induced on the model
parameter space by p(s|N).

To find (B), we make use of a generic probability statement in two parts:

15t part - Mapping to regions: p(s|N) and rt(6) should be consistent in
the following sense

Pr(s € §) = Pr(f € ©,)

7(0)

do(6)

p(s|N) =f95 (s — £(6))7(8) db, _/gl‘?fl



Mapping to multi-dimensional SUSY space - |l

2" part — Mapping to points: The expected signal s is the same for all
points in ©,. Therefore, in that sense, the points in O are
indistinguishable.

We propose, therefore, assigning the same probability density to every
point in O;.

do(6)
s [V

surface term

m(#) = p(s s— f(@) =0

N)/

For simplicity in this study the surface term was neglected, because we
expect it to be a much gentler function compared to p(s|N).



Prior = on mSUGRA space . Prior x on mSUGRA spa Prior = on mSUGRA space
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Adding the EW/flavor observables

We continue the inference chain by incorporating the likelihood

(ai(mg,my jg)—m;)

L(&|mg.myya) H e 207
i

for a set of EW/flavor observables |, that are BR(b -> sy), R(BR(b -> tv)), BR(b -> Dtv),
BR(b -> Dtv)/BR(b -> etv), Rj,5, BR(D, -> tv), BR(D, -> pv) and Ap.

Since the nature is LM1, we used the LM1 values for the observables along with the

measured uncertainties.

Paosterior after EW obs.
GO0
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8 400
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5D SUGRA example

We use two simple extensions of mSUGRA, each with 5 free parameters:
* Model 1: Non-universal m0(1,2), with parameterization:

M, , Mp(1,2), myy, Ay, tanpB, u>0
Model 2: Non-universal M3, with parameterization:

Mo, ml,."l! MB: ADJ tanB: K= 0

The “true state of nature (TSN)” is chosen from Model 1, and is defined as
m, = 1000, my(1,2) =60, A, =0, tanp = 10



5D SUGRA example - method

* The expected signal s is given by
s = cross section x efficiency x integrated luminosity.

* The “observed” count N is obtained as the sum of the expected signal
for the true state of nature and the expected background obtained from
the CMS analysis.

* We generate a sample of points 6 from the posterior p(s|N), given that
s = f(B), using a Markov Chain Monte Carlo method.

* In general, the efficiency is a function of the parameter space of the
model. It is obtained by performing the analysis on a given point 8. This
requires simulating a sufficient number of events for 6.

* Since computing this efficiency with official tools is time consuming,
we have explored the possibility of using a constant efficiency and
reweighting the points afterwards with p(s|N) / p(s.o.e) | N).



Mapping to the 5D SUGRA space - |

Plots show the distributions of the points sampled by the MCMC, before
the corrective weights are applied.
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Mapping to the 5D SUGRA space - lI

Distribution after weighting, which gives the prior rt(8), which is calculated
using 100pb* data. Then we recursively add information from more data
through multiplying with the likelihood of data given the signal count.
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Adding the EW/flavor observables

Distributions after adding the input from EW/flavor observables obtained
through multiplying by the likelihood of EW/flavor energy data.
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Diagnosis

The relevant subspace is not being sampled efficiently because of the use
of a constant efficiency.

befare weighting EI 160
600 o z
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Aon |
. -
200 1
L L]
lom Fall
'R | | ]
b 50 100 150 200 25 300 350 0 =0 1 150 20 S0 300 350 ¢
signal count with correct efficiency signal count with correct efficiency

To do the MCMC more efficiently, we need to sample from the p(N|s)
calculated using the correct efficiency.

This means we have to calculate the efficiencies during the MCMC.
To be able to do this, we need to have VERY FAST AND ACCURATE
SIMULATION TOOLS!



Summary and outlook

.

* We proposed a way to construct multi-dimensional priors from the
posterior density for a simple experiment. The key idea is to start with
a reference prior, and map the posterior density into the parameter
space of the model under investigation.

* It is necessary to use the correct efficiencies to ensure efficient
sampling of the parameter space. This requires the use of fast and
accurate event simulators.

* The single count model we used for building the reference prior can
be replaced by any for which the signal and background modeling is
well-understood.

* Reference analysis provides a procedure for ranking models (i.e.,
hypothesis testing), parameter estimation, etc.

* We need to find observables that will break the degeneracy in the
look-alike regions.






