MD6863 - MD summary

Joschua Dilly, Ewen H. Maclean, Maël le Garrec, Léon van Riesen-Haupt

MD6863 - motivation

- Aim to measure detuning vs xing measurements after all other linear/nonlinear corrections have been commissioned (initial studies during commissioning were not with final betabeat etc)
- Aim to validate and refine *b*₆ corrections determined during commissioning period
- Aim to perform measurements of detuning vs xing with single IP and \pm crossing angles to identify sources of feed-down to b_4 in LHC.

MD6863 - some issues encountered

- 9h planned (10h requested)
- Start time was initially moved forward, but then delayed due to previous shift (B2 injection instabilities)
 - \rightarrow started at 21:15 (initially scheduled at 20.00)
 - \rightarrow allowed to measure into the turn-around, finished 06.30
- Injection took a while to get good emittance (\approx 2h)
- AC-Dipole B2-H broken \Rightarrow fixed remotely (lost \approx 1h)
- \Rightarrow Managed 5h.30min of detuning measurements

MD6863 - Success!

In the 5h 30min we did Beam 1: 192 kicks, Beam 2: 174 kicks:

- Amplitude Detuning measurements + online analysis:
 - Flat Orbit (H/V)
 - $^{\circ}$ With crossing-scheme applied (H/V)
 - ⇒ First time doing dodecapole corrections online! (LHCBEAM/ATS_2022_06_25_MD6863_BX_LOCAL_IP15_B6 in BETA-BEATING-MD)
- Only kicks (analysis continuing offline):
 - \circ IP5 +160 $\mu {\rm rad}$ (H/V)
 - \circ IP5 $-160\,\mu{\rm rad}$ (H/V)
 - $\circ~$ IP1 $-160\,\mu{\rm rad},$ IP5 $+160\,\mu{\rm rad}$ (H/V) with corrections
- Missing: Optional DA check via emittance blow-up (maybe possible to combine with future NLoptics MD).

21.07.22

MD6863

Detuning Summary

$\left[10^3\mathrm{m}^{-1}\right]$	Setting	$\partial Q_x / \partial (2J_x)$	$\partial Q_y / \partial (2J_x)$	$\partial Q_x / \partial (2J_y)$	$\partial Q_y / \partial (2J_y)$
2018 flat-orbit	$\begin{array}{c} 6.5\mathrm{TeV} \\ \beta^*\!=\!0.3\mathrm{m} \end{array}$	$\begin{array}{c} 0.8 \pm 0.5 \\ \text{-7.5} \pm 0.5 \end{array}$	$\begin{array}{c} 10 \pm 1 \\ 8 \pm 2 \end{array}$	$8 \pm 28 \\ -2 \pm 1$	$\begin{array}{c} -3 \pm 1 \\ 6 \pm 1 \end{array}$
2022-05-09 flat-orbit	$\begin{array}{c} 6.8\mathrm{TeV}\\ \beta^*\!=\!0.3\mathrm{m} \end{array}$	$^{-15.4}\pm 0.9$ $^{-8.7}\pm 0.7$	$32.2 \pm 2 \\ 13 \pm 2$	$33.7 \pm 1.0 \\ -3 \pm 2$	$\begin{array}{c} -8.4 \pm 0.5 \\ 18 \pm 7 \end{array}$
MD6863 (2022-06-24) flat-orbit	$\begin{array}{c} 6.8\mathrm{TeV}\\ \beta^*\!=\!0.3\mathrm{m} \end{array}$	-18 ± 2 -22 ± 2	$\begin{array}{c} 32\pm3\\ 14\pm3 \end{array}$	$\begin{array}{c} 15\pm3\\ 13\pm3\end{array}$	$\begin{array}{c c} 0.2 \pm 1.0 \\ 3.6 \pm 0.9 \end{array}$
2018 full-xing @ +160µrad	$\begin{array}{c} 6.5\mathrm{TeV} \\ \beta^*\!=\!0.3\mathrm{m} \end{array}$	$\begin{array}{c} 34\pm1\\ \textbf{-3}\pm1 \end{array}$	$8 \pm 2 \\ -10 \pm 3$	$\begin{array}{c} 18\pm1\\ -14\pm2 \end{array}$	$\begin{array}{c} -38 \pm 1 \\ 13 \pm 3 \end{array}$
2022-05-09 IP1&5 xing @ ∓150µrad	$\frac{6.8\mathrm{TeV}}{\beta^*\!=\!0.3\mathrm{m}}$	$\begin{array}{c} 20 \pm 4^1 \\ 26 \pm 0.8 \end{array}$	$\begin{array}{c} 43 \pm 4 \\ \textbf{-31} \pm \textbf{3^1} \end{array}$	$\begin{array}{c} 33 \pm 10^{2} \\ -27 \pm 4^{2} \end{array}$	$\begin{array}{c c} -10 \pm 3^2 \\ 18 \pm 7^2 \end{array}$
MD6863 (2022-06-24) IP1&5 xing @ ∓160 µrad	$\begin{array}{c} 6.8\mathrm{TeV}\\ \beta^*\!=\!0.3\mathrm{m} \end{array}$	$10 \pm 2 \\ 22 \pm 1$	37 ± 2 -47 ± 3	26 ± 2 -43 ± 3	$\begin{array}{c c} 1.4 \pm 0.9 \\ 20 \pm 2 \end{array}$

1: noisy measurement

2: very few points (beam dump)

Calculated

Corrections

Figure: Corrected detuning. In circles the expected detuning correction from PTC, the X marks the calculated detuning. The horizontal bars show the targets (flat - w/ xing) from the measurements.

Summary of analysis without b_6 corrections

- In general very similar tendencies to commissioning measurements.
- ⇒ Waist shift had only minor influence on this detuning.
- \Rightarrow New corrections are a bit different from old.

Conclusion

- Very successful MD, despite time constraints
- Lots of data collected
- \Rightarrow Preliminary analysis shows very good signal of tune in data!
- ⇒ Analysis ongoing. Will be very useful in pinpointing the source (IP? decapoles? dodecapoles?) of amplitude detuning from feed-down to b_4 due to the crossing scheme and the efficiency of the proposed b_6 correction.
- ⇒ Achieved all core aims (and more!). Many thanks to great OMC teamwork + new people learning procedures and software for amplitude detuning studies!
- \Rightarrow Many thanks to OP and EICs!

