

SUMMARY OF THE LHC RF FMD 2022 MD#6944 Voltage calibration

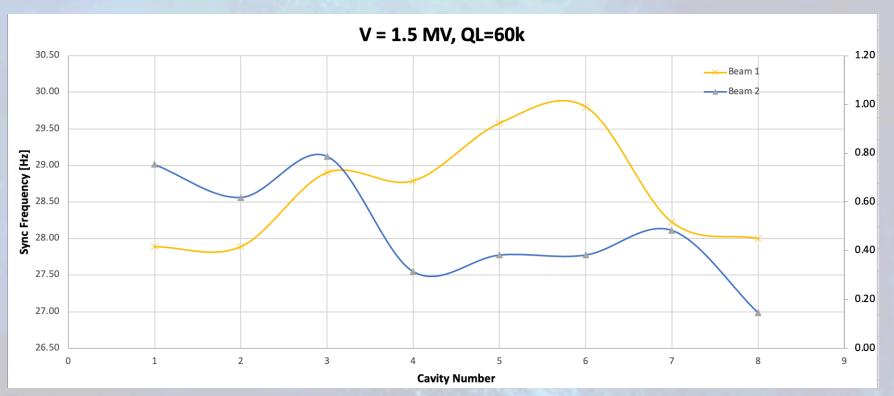
H. Timko, T. Argyropoulos, R. Calaga, B. Karlsen-Bæck, I. Karpov, SY-RF

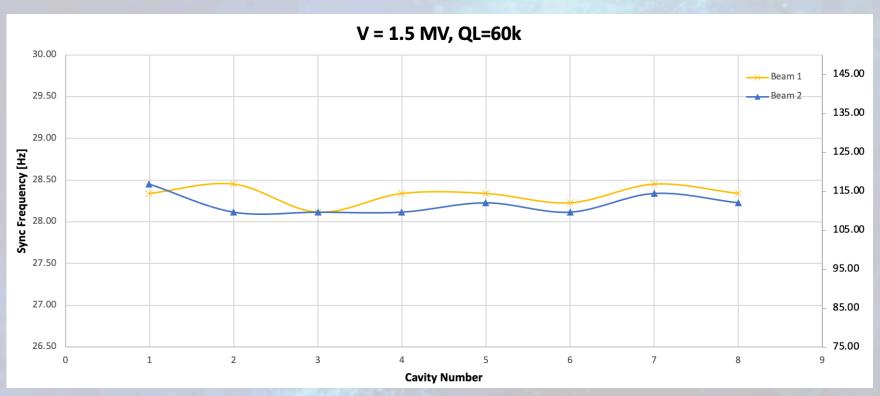
Motivation and aim

Motivation:

- To give precise estimates of RF power limitations at injection
 - Ideally, we should know precisely the RF power, but the measurement has intrinsically large errors
 - Another way to determine RF power is by knowing Q_L and voltage
 - Q_L is calibrated in open-loop response measurements
 - This MD was to calibrate the voltage with beam

· Aim:


- Know the exact voltage seen by the beam
 - Feedback regulates antenna voltage to set point, but antenna voltage can have an error -> this is
 exactly what we try to calibrate in this MD


Measurement method

- Determine voltage via synchrotron frequency measurement
 - Injected small and nominal emittance pilots with phase loop open and observed oscillation frequency from high-resolution profiles
- Voltage calibration in different settings
 - · Cavity-by-cavity: captured in a single cavity at a time
 - Measured at 0.5 MV/cavity, 1 MV/cavity, and 1.5 MV/cavity
 - Verified the reproducibility of results for 4/16 cavities
 - Corrected calibration errors via voltage partitioning
 - Verified that the voltage can indeed be corrected like this
 - Measured the overall calibration of the total voltage
 - With all cavities corrected, in the range of 4-12 MV

Overview of preliminary results

- Detailed analysis still to be performed
- Preliminary results show that there is indeed a small line-by-line error (about ±12-14% error in voltage), which is the same at different voltage levels and can thus be corrected
 - · Shot-to-shot variation: 0.5 Hz, we can probably not do any better than this
 - In total voltage, observed a larger discrepancy at low than at high voltage, which could be a measurement artefact (t.b.c.)

Outlook

- A detailed analysis is yet to be performed
 - We need to understand also the behaviour observed with the total voltage
- If preliminary observations are confirmed, we have to decide whether or not to implement the correction of voltage calibration errors operationally
 - · Promising: cavity-by-cavity results show small voltage dependence and results are very reproducible
- The results of the MD will also help us to determine calibration errors of the RF power
 - A first analysis shows some outliers among the 16 lines -> to be investigated in future MDs

Thanks for your attention!