

CERN IT Department CH-1211 Genève 23 Switzerland www.cern.ch/it

Batch Monitoring and Testing HEPiX Spring 2011

Jérôme Belleman CERN – IT-PES May 2011

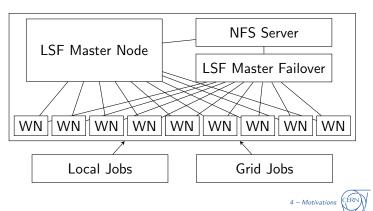
Outline

1 Motivations

2 What We Have

3 What We Want

4 Technology Investigations


Motivations

- Platform LSF 7.0.6
- All resources in one redundant instance
- Different shares for different customers: public, grid and several for CERN experiments

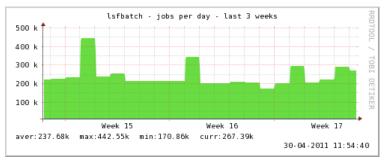
A Large, Fragmented Batch System

> 3 700 nodes

> 30 000 cores

CERN IT Department CH-1211 Genève 23 Switzerland www.cern.ch/it

Cluman – Ixbatch



Department

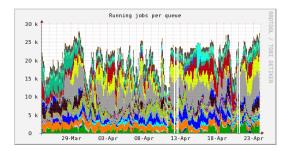
- 180 000 jobs/day
- 25 resource pools
- Supports high-energy physics and other projects in the laboratory

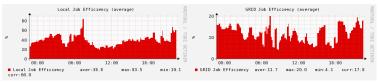
Service Level Status - CERN Batch Service

What We Have

Lemon

- For Linux-based computer centre machines
- Used for many services at CERN
- Client-Server oriented
- Node-level and alarm-driven monitoring
- Log files must be manually scrutinised
- Commands must be manually issued and their output manually read



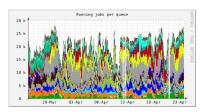


Views

CERN**T** Department

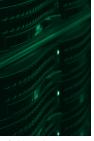
By queue, by user, by group:

CERN IT Department CH-1211 Genève 23 Switzerland www.cern.ch/it


9 – What We Have

Shortcomings and Ideas

Node monitoring	\rightarrow	Job-level monitoring	
Limited set of	\rightarrow	Add <i>many</i> more (e.g. users, CPU	
views		time consumed, hosts,)	
Static plots	\rightarrow	More flexible view set	
Data collected	\rightarrow	Keep raw data	
once for plots			
Missing	\rightarrow	Allow for correlations	
correlations		(e.g. jobs/user, CPU time/queue,	
		hosts/host partition,)	



10 - What We Have

What We Want

Monitoring & Profiling

We need to answer questions such as:

- Why is a job not running?
- Does fairshare behave as intended?
- Is the use unreasonable?
- Are we low on resources?

Monitoring:

- Determine correct setup of fairshare
- Investigate more advanced LSF features
- Decide about needs for restructuring queues
- Reduce problem identification time
 Profiling:
 - How resources are used and understand under-utilisation
 - Identify job types and define application profiles
 - Capacity planning

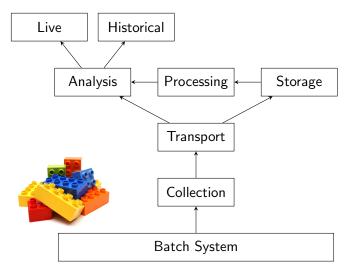
12 – What We Want

- For the service managers
- For the service desk
- For the end user
- Pluggable: "Write your own data miner against our data"

Testing

We need an integration instance:

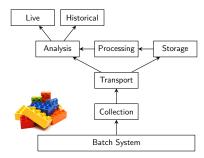
- To test significant changes
- To test new queues, fine-tune fairshare, ...
- Which may constantly be submitted jobs if needs be



Survey of existing tools

- Integrate existing monitoring data sources
- Batch system independent
- IT-wide effort
- Lego-like, interchangeable building blocks

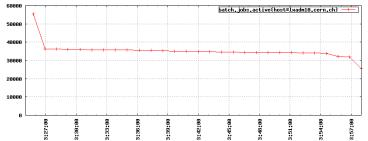
Technology Investigations



Technology Investigations

- Relational databases: Oracle, MySQL, PostgreSQL
 - NoSQL databases: Cassandra, MongoDB, CouchDB, Riak
 - Time series databases: OpenTSBD, RRDtool, Whisper
 - Transport: ActiveMQ, rsyslog
 - User interface and dashboards: Django, Graphite, Flot

CERN


Department

OpenTSDB Example

From	To (now) 🔲 Autoreload 🔰	WxH: 850x320
2011/02/28-13:25:00	2011/02/28-13:58:00	Axes Key
active + Metric: batch.jobs.active Tags queue X os user	Rate Right Axis Aggregator: Sum V Downsample avg V 10m	Y Y2 Label

1438 points retrieved, 29 points plotted in 45ms.

Outlook

Outlook

Current monitoring focused on nodes and alarms. But we also want:

- Job-level monitoring
- To perform correlations
- Heavy analytics

How?

- Survey existing tools
- Batch-system independent
- Lego-like, interchangeable building blocks When?
 - Currently scouting existing tools
 - First prototype in 6 months

CERN IT Department CH-1211 Genève 23 Switzerland www.cern.ch/it We are interested in other people's experiences!

Questions & Discussion

