Status of the FCC Study

Frank Zimmermann, CERN

Thanks to Andrey ABRAMOV, Alain BLONDEL, Manuela BOSCOLO, Michael BENEDIKT, Emanuela CARIDEO, Paolo CRAIEVICH, Massimo GIOVANNOZZI, Michael HOFER, Klaus Patrick JANOT, Jacqueline KEINTZEL, Mike KORATZINOS, Roberto LOSITO, Mauro MIGLIORATI, Katsunobu OIDE, Tor RAUBENHEIMER, Dmitry SHATILOV, Rogelio TOMAS, ...

EPOL 2022, 19 September 2022

on behalf of the FCC collaboration and FCCIS DS team

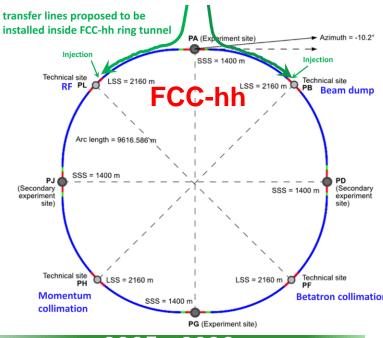
FCC

LHC

http://cern.ch/fcc

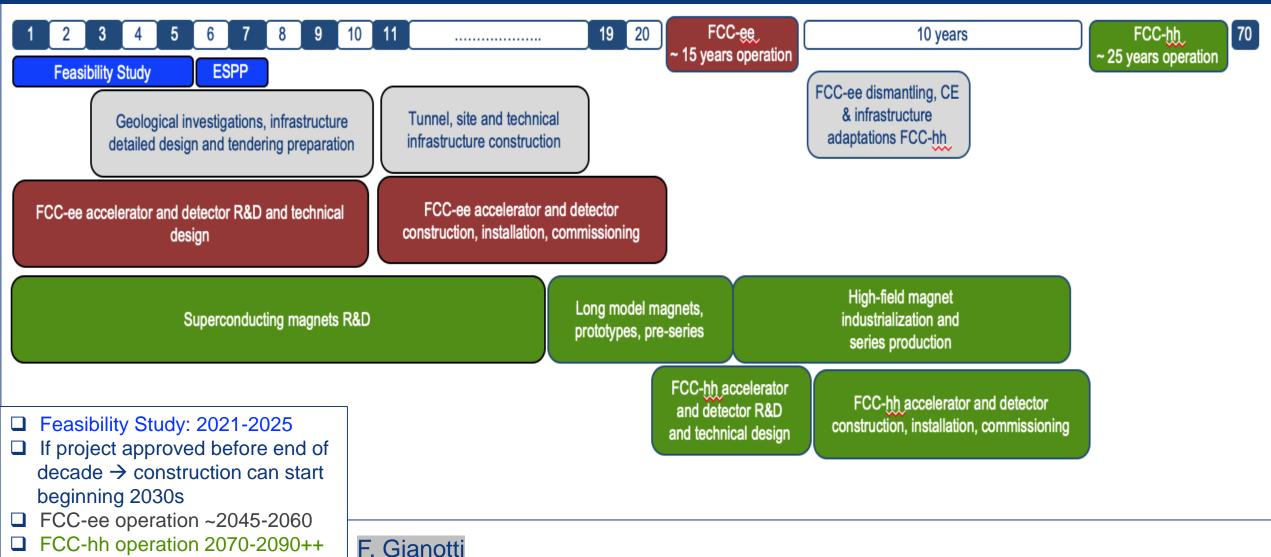
Work supported by the **European Commission** under the **HORIZON 2020 projects EuroCirCol**, grant agreement 654305; **EASITrain**, grant agreement no. 764879; **iFAST**, grant agreement no. 101004730, **FCCIS**, grant agreement 951754, and **E-JADE**, contract no. 645479

photo: J. Wenninger


The FCC integrated program inspired by successful LEP – LHC programs at CERN

comprehensive long-term program maximizing physics opportunities

- stage 1: FCC-ee (Z, W, H, tt) as Higgs factory, electroweak & top factory at highest luminosities
- stage 2: FCC-hh (~100 TeV) as natural continuation at energy frontier, with ion and eh options
- complementary physics
- common civil engineering and technical infrastructures, building on and reusing CERN's existing infrastructure
- FCC integrated project allows seamless continuation of HEP after completion of the HL-LHC program



technical timeline of FCC integrated programme

FCC Feasibility Study (FS)

2013 ESPPU requested FCC Conceptual Design fourvolume report \rightarrow 4 volumes delivered in 2018/19, describing the physics cases, the design of the lepton and hadron colliders, and the underpinning technologies and infrastructures. Fol-

2020 ESPPU→ 2021 Launch of FCC Feasibility Study (FCC FS) by CERN Council

- Feasibility Study Report (FSR) expected by the end of 2025, not only the technical design, but also numerous other key feasibility aspects, including tunnel construction, financing, and environment
- FSR will be an important input to the next ESPPU expected in 2026/27.

FCC FS is organized as an international collaboration. The FCC FS and a possible future project will profit from CERN's decadelong experience with successful large international accelerator projects, e.g., the LHC and HL-LHC, and the associated global experiments, such as ATLAS and CMS.

Organisational Structure of the FCC Feasibility Study

http://cds.cern.ch/record/2774006/files/En glish.pdf

Main Deliverables and Timeline of the FCC **Feasibility Study**

http://cds.cern.ch/record/2774007/files/En glish.pdf

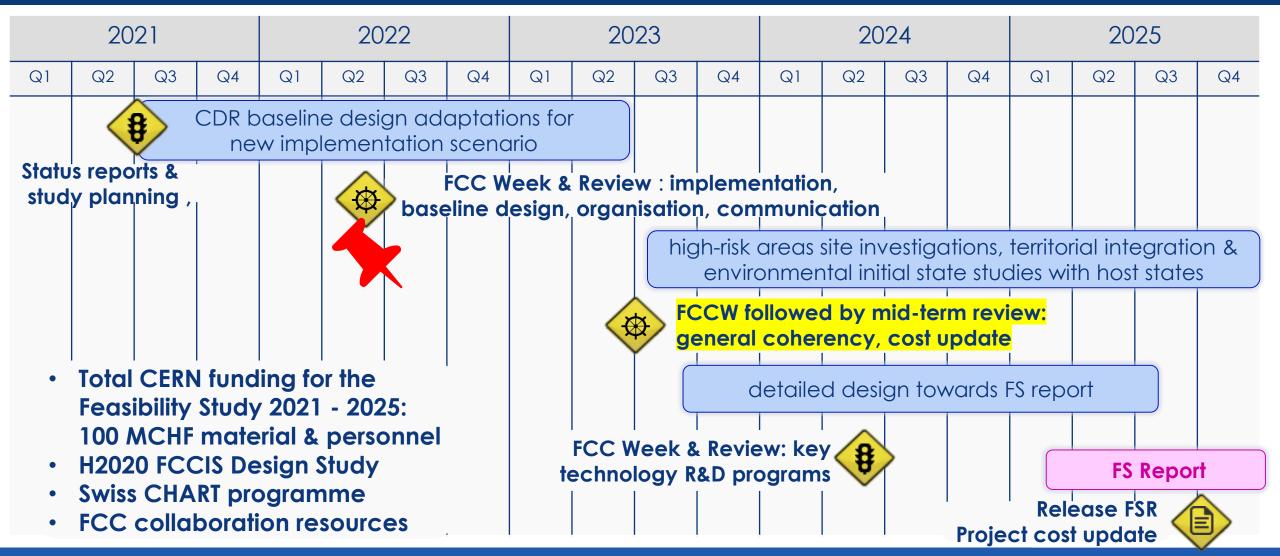
> CERN/SPC/1155/Rev. CERN/3566/Rev.2

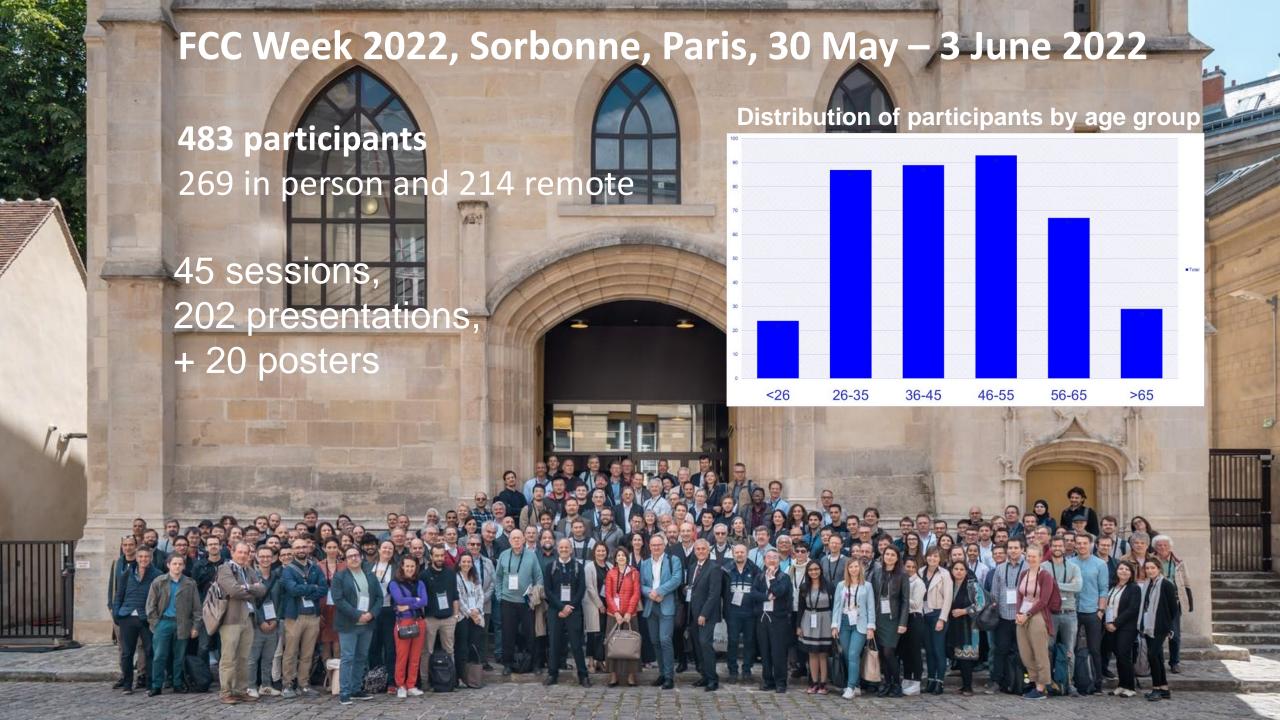
CERN/3588 Original: English

ORGANISATION EUROPÉENNE POUR LA RECHERCHE NUCLÉAIRE

ORGANISATION EUROPÉENNE POUR LA RECHERCHE NUCLÉAIRE CERN EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

Voting Procedus RESTRICTED COUNCIL 17 June 2021


FUTURE CIRCULAR COLLIDER FEASIBILITY STUDY: PROPOSED ORGANISATIONAL STRUCTURE


Future Circular Collider, to be carried out in line with the recommendations of the Europe at, and feedback received from, the Council in March 2021 and is now submitted for the latte 2025. FUTURE CIRCULAR COLLIDER FEASIBILITY STUDY: MAIN DELIVERABLES AND MILESTONES

This document describes the main deliverables and milestones of the study being carried out to assess the technical and financial feasibility of a Future Circular Collider at CERN. The result Strategy for Particle Physics updated by the CERN Council in June 2020. It reflects discussi of this study will be summarised in a Feasibility Study Report to be completed by the end

Feasibility Study Timeline

Mid-Term Review & Cost Review, autumn '23

Mid-term review report, supported by additional documentation on each deliverable, will be submitted to review committees and to Council and its subordinate bodies, as input for the review.

Results of both general mid-term review and the cost review should indicate the main directions and areas of attention for the second part of the Feasibility Study

Infrastructure & placement

- Preferred placement and progress with host states (territorial matters, initial states, dialogue, etc.)
- Updated civil engineering design (layout, cost
- Preparations for site investigations

Technical Infrastructure

- Requirements on large technical infrastructure systems
- System designs, layouts, resource needs, cost estimates

Accelerator design FCC-ee and FCC-hh

- FCC-ee overall layout with injector
- Impact of operation sequence: Z, W, ZH, tt vs start at ZH
- Comparison of the SPS as pre-booster with a 10-20 GeV linac
- Key technologies and status of technology R&D program
- FCC-hh overall layout & injection lines from LHC and SC-SPS

Physics experiments, detectors:

theoretical uncertainties towards matching FCC-ee statistical precision for the most important measurements.

- First documentation of main detector requirements to fully exploit the FCC-ee physics opportunities

Organisation and financing:

- Overall cost estimate & spending profile for stage 1 project

Environmental impact, socio-economic impact:

- Initial state analysis, carbon footprint, management of excavated materials, etc.
- Socio-economic impact and sustainability studies

FCC-ee in a nutshell

- High luminosity precision study of Z, W, H, and $t\bar{t}$ 2×10³⁶ cm⁻²s⁻¹/IP at Z (or total ~10³⁷ cm⁻²s⁻¹ with 4 IPs), 7×10³⁴ cm⁻²s⁻¹ at ZH, 1.3×10³⁴ cm⁻²s⁻¹ at $t\bar{t}$, unprecedented energy resolution at Z (<100 keV) and W (<300 keV)
- Low-risk technical solution based on 60 years of e⁺e⁻ circular colliders and particle detectors; R&D on components for improved performance, but no need for "demonstration" facilities; LEP2, VEPP-4M, PEP-II, KEKB, DAΦNE, or SuperKEKB already used many of the key ingredients in routine operation
- Infrastructure will support a century of physics
 - \circ FCC-ee \rightarrow FCC-hh \rightarrow FCC-eh and/or several other options (FCC- $\mu\mu$, Gamma Factory ..)
- Utility requirements similar to CERN existing use
- Strong support from CERN, partners, and 2020 ESPPU
- Detailed multi-domain feasibility study underway for 2026 ESPPU

a case for four IPs & experiments

Four different FCC-ee detectors to optimally address:

- (1) Higgs factory program; (2) Ultraprecise electroweak & QCD physics;
- (3) Heavy Flavour physics; (4) Search for feebly coupled particles

For FCC-hh, two highluminosity general-purpose experiments and two specialized experiments are foreseen, similar to present LHC detectors

FCC-ee & hh would share the 4 experimental caverns

M. Dam, ECFA Det. R&D Roadmap, 2021, https://indico.cern.ch/event/994685/

Detector Requirements in Brief

"Higgs Factory" Programme

- Momentum resolution of $\sigma_{pT}/p_T^2 \simeq 2 \times 10^{-5} \, \text{GeV}^{-1}$ commensurate with $\mathcal{O}(10^{-3})$ beam energy spread
- Jet energy resolution of 30%/VE in multi-jet environment for Z/W separation
- Superior impact parameter resolution for c, b tagging

Ultra Precise EW Programme

- Absolute normalisation (luminosity) to 10⁻⁴
- Relative normalisation (e.g. $\Gamma_{had}/\Gamma_{\ell}$) to 10⁻⁵
- Momentum resolution "as good as we can get it"
 - · Multiple scattering limited
- Track angular resolution < 0.1 mrad (BES from μμ)
- Stability of B-field to 10⁻⁶: stability of Vs meast.

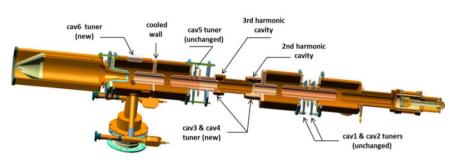
Heavy Flavour Programme

- Superior impact parameter resolution: secondary vertices, tagging, identification, life-time measts.
- ECAL resolution at the few %/ vE level for inv.
 mass of final states with π⁰s or vs
- Excellent π⁰/γ separation and measurement for tau physics
- PID: K/π separation over wide momentum range for b and τ physics

Feebly Coupled Particles - LLPs

Benchmark signature: $Z \rightarrow vN$, with N decaying late

- Sensitivity to far detached vertices (mm → m)
 - Tracking: more layers, continous tracking
 Calorimetry: granularity, tracking capability
- Large decay lengths ⇒ extended detector volume
- Hermeticity

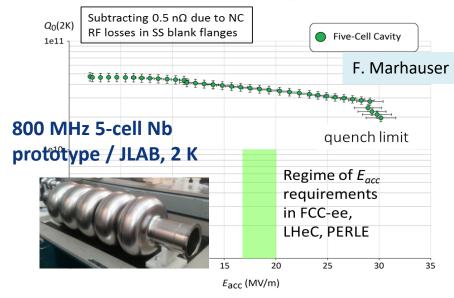


accelerator R&D examples

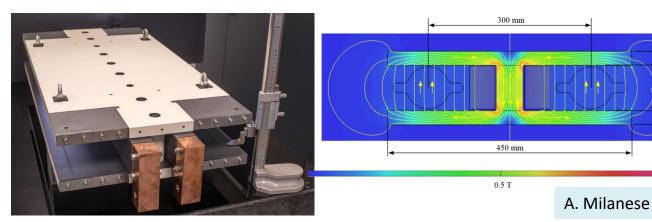
efficient RF power sources

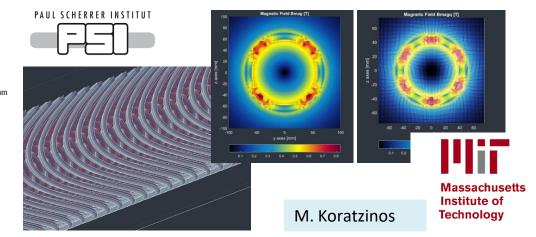
(400 & 800 MHz)

I. Syratchev

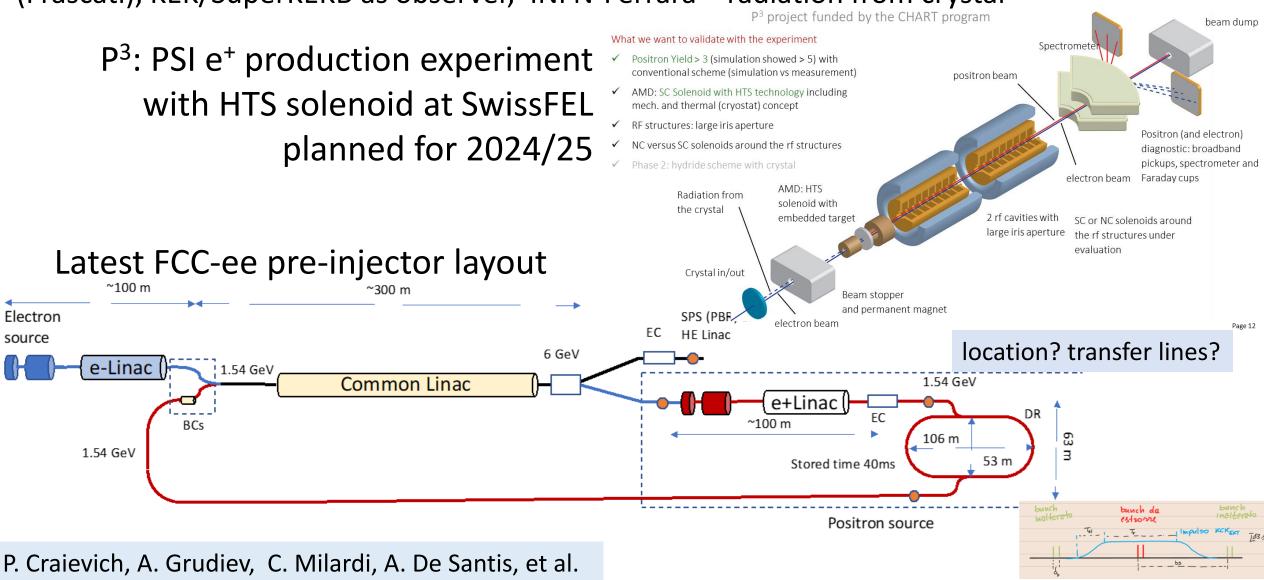

400 MHz 1-,2- & 4cell Nb/Cu, 4.5 K

FPC & HOM coupler, cryomodule, thin-film coatings...

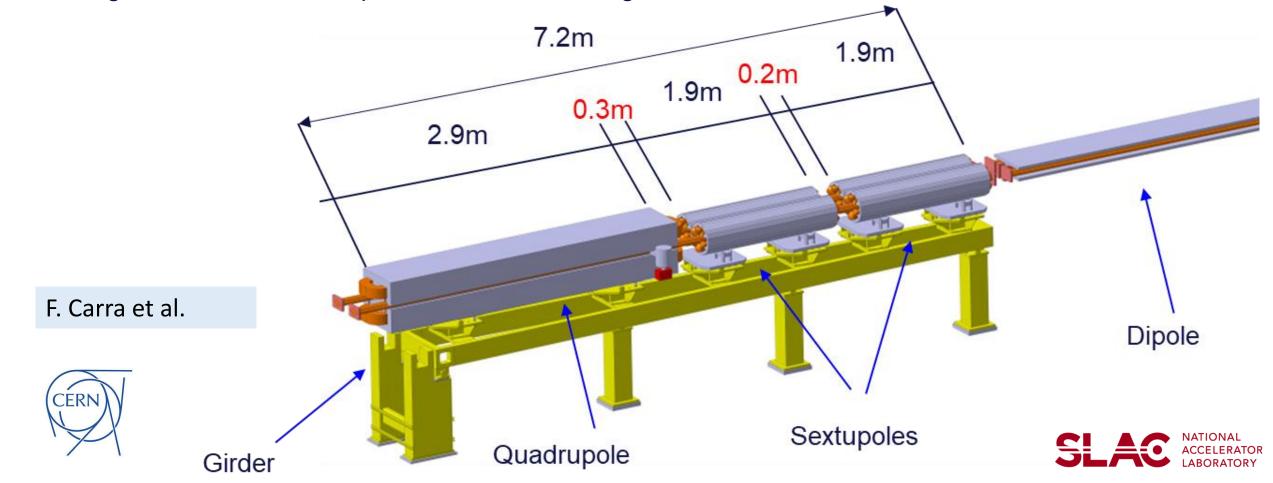

efficient SC cavities



energy efficient twin aperture arc dipoles

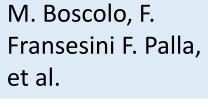

under study: CCT HTS quad's & sext's for arcs

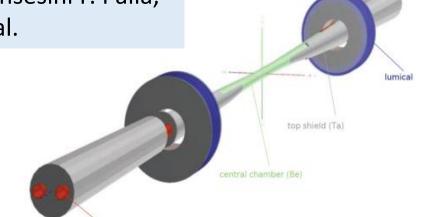
FCC-ee Pre-Injector - Swiss CHART 2 program


Collaboration between PSI and CERN with external partners: CNRS-IJCLab (Orsay), INFN-LNF (Frascati), KEK/SuperKEKB as observer, INFN-Ferrara – radiation from crystal

FCC-ee Arc Mockup

- Arc half-cell: most recurrent assembly of mechanical hardware in the accelerator (~1500 similar FODOs)
- Mock-up → Functional prototype(s) → Pre-series → Series
- Optimizing and testing fabrication, integration, installation, assembly, transport, maintenance
- Working with structures of equivalent volumes, weights, stiffness

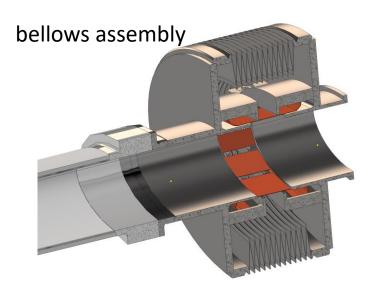


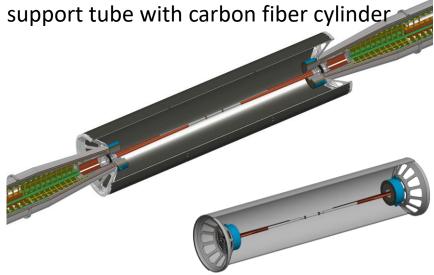

FCC-ee IR Mockup

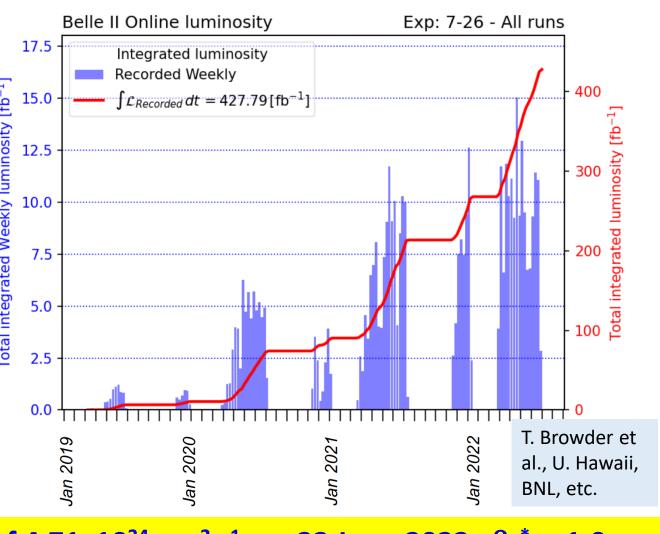
IP chamber: critical for performance, MDI

Step 1: Central IP vacuum chamber (test cooling and vacuum systems), AlBeMet162 & steel transition (shape of transition, EBW process), Bellows (vacuum and thermal tests), Welding (EBW for elliptical geometry), C-fibre support structure

Step 2: Trapezoidal vacuum chamber with remote vacuum connection, first quadrupole QC1, cryostat, beam pipe and quadrupole and cryostat support, vibration & alignment sensors






SuperKEKB / Belle II

Design: double ring e⁺e⁻ collider as Bfactory at 7(e⁻) & 4(e+) GeV; target luminosity $\sim 6 \times 10^{35}$ cm⁻²s⁻¹; $\beta_{\nu}^{*} \sim 0.3$ mm; beam lifetime ~5 min; topup inj.; e+ rate up to $\sim 2.5 \ 10^{12} \ / s$; under commissioning

 \mathcal{L}_{peak} = 4.7 x 10³⁴/cm²/sec nanobeams: vertical beam spot size 300nm (design 50nm)

This is four-times PEP-II peak with much lower beam currents.

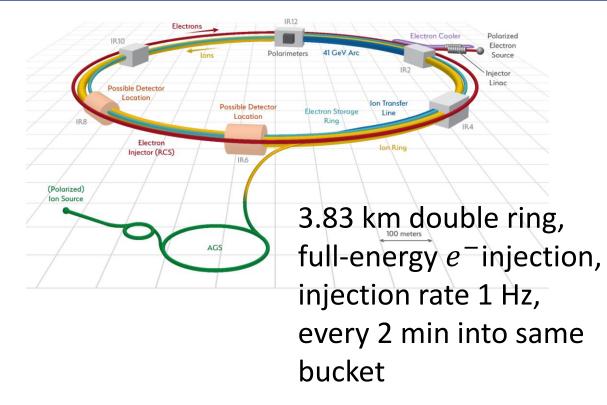
>2 x higher than KEKB

Not easy:

ran throughout the two years of the COVID-pandemic with social distancing.

Integrated a BaBar size data sample, 428 fb⁻¹. Need more running time.

world record luminosity of 4.71×10^{34} cm⁻²s⁻¹ on 22 June 2022, $\beta_y^* = 1.0$ mm in routine operation, also $\beta_y^* = 0.8$ mm demonstrated in both rings — with FCC-ee-style "virtual" crabwaist collision scheme originally developed for FCC-ee (K. Oide)

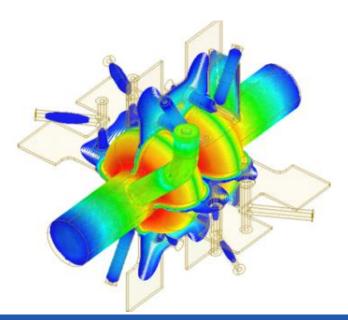

Electron Ion Collider (EIC)

US EIC Electron Storage Ring similar to, but more challenging than, FCC-ee beam parameters almost identical, but twice the maximum electron beam current, or half the bunch spacing, and lower beam energy

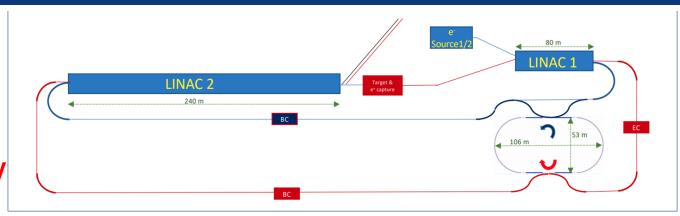
~10 areas of common interest identified by the FCC and EIC design teams, addressed through joint EIC-FCC working groups.

EIC will start beam operation about a decade prior to FCC-ee

The EIC will provide another invaluable opportunity to train the next generation of accelerator physicists on an operating collider, to test hardware prototypes, beam control schemes, etc.


	EIC	FCC-ee-Z
Beam energy [GeV]	10 (18)	45.6 (80)
Bunch population [10 ¹¹]	1.7	1.7
Bunch spacing [ns]	10	15, 17.5 or 20
Beam current [A]	2.5 (0.27)	1.39
SR power / beam /meter [W/m]	7000	600
Critical photon energy [keV]	9 (54)	19 (100)

Technical reviews on injector, RF, placement in 2021


SRF:

study alternative RF
frequency of 600 or 650 MHz
(synergies with EIC, JLEIC,
PIP-II, CEPC); explore heavily
damped cavity concept with
slotted waveguides as option
for all energies.

FCC-ee injector:

new layout (single energy in linac, higher e+ prod. energy); linac extension ~20 GeV

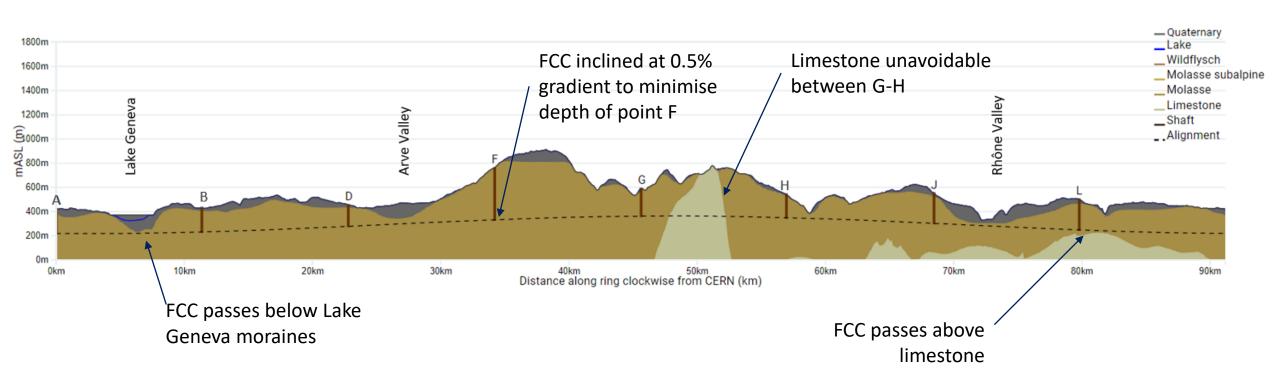
Placement:

minimizing the risk → **new baseline layout**, *C*=91.1 km; full 4-superperiodicity & symmetry, compatible with 2 or 4 IPs for FCC-ee

SECTOR	RISK	FINAL RISK INDEX							Std. Dev.*
SECIOR	RISK	17-0.8	19-0.3	21-0.3	31-0.4	35-0.6	37-0.3	38-0.1	Std. Dev.
LAKE	Quaternary soft ground, water bearing	47	28	54	29	65	79	40	20
ARVE	Quaternary soft ground, water bearing	12	4	9	6	6	4	5	3
MANDALLAZ	Limestone, water bearing karsts	96	96	96	96	96	96	96	0
USSES	Quaternary soft ground, water bearing	7	7	5	3	1	2	2	2
VUACHE	Limestone, water bearing karsts	24	442	240	12	50	12	12	16
RHONE	Quaternary soft ground, water bearing	18	5	8	11	8	11	12	4
JURA	Limestone, water bearing karsts	100	672	864	100	100	100	100	0
	TOTAL	304	1254	1276	257	326	303	267	29

optimized placement and layout

8-site baseline "PA31"


Number of surface sites	8
LSS@IP (PA, PD, PG, PJ)	1400 m
LSS@TECH (PB, PF, PH, PL)	2143 m
Arc length	9.6 km
Sum of arc lengths	76.9 m
Total length	91.1 km

- 8 sites less use of land, <40 ha instead 62 ha
- Possibility for 4 experiment sites in FCC-ee
- All sites close to road infrastructures (< 5 km of new road constructions for all sites)
- Vicinity of several sites to 400 kV grid lines
- Good road connection of PD, PF, PG, PH suggest operation pole around Annecy/LAPP

FCC Long Section – PA31-1.0

Shaft depth:

A: 202 m

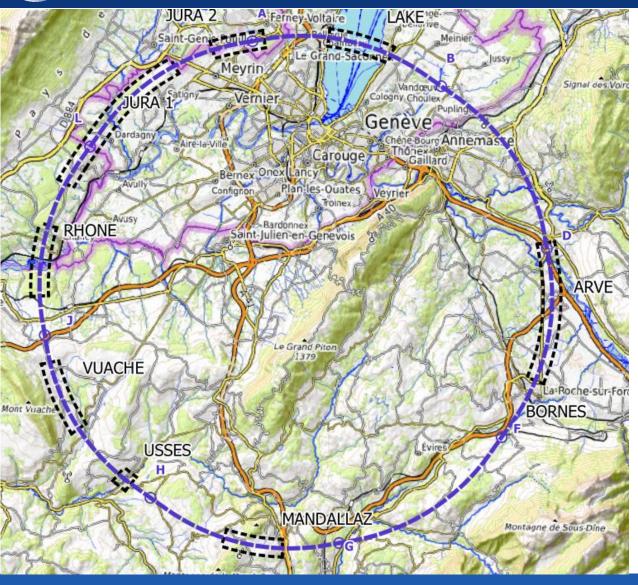
B: 200 m

D: 177 m

F: 399 m

G: 228 m

H: 139 m


J: 251 m

L: 253 m

John Osborne

plans for high-risk area site investigations

JURA, VUACHE (3 AREAS)

Top of limestone Karstification and filling-in at the tunnel depth Water pressure

LAKE, RHÔNE, ARVE AND USSES VALLEY (4 AREAS)

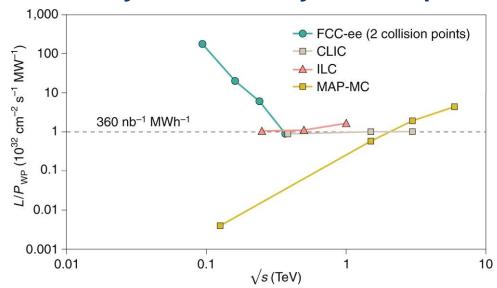
Top of the molasse Quaternary soft grounds, water bearing layers

MANDALLAZ (1 AREAS)

Water pressure at the tunnel level Karstification

BORNES (1 AREA)

High overburden molasse properties Thrust zones


Site investigations planned for 2024 – 2025: ~40-50 drillings, some 100 km of seismic lines

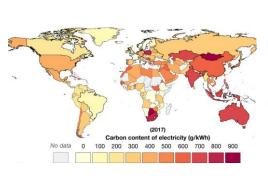
sustainability and carbon footprint studies

highly sustainable Higgs factory

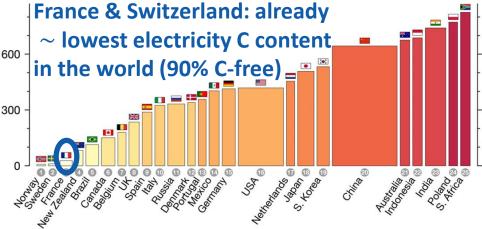
luminosity vs. electricity consumption

Thanks to twin-aperture magnets, thin-film SRF, efficient RF power sources, top-up injection

optimum usage of excavation material int'l competition "mining the future®"


https://indico.cern.ch/event/1001465/

FCC-ee annual energy consumption ~ LHC/HL-LHC


120 GeV	Days	Hours	Power OP	Power Com	Power MD	Power TS		wer down			
Beam operation	143	3432	293						1005644	MWh	
Downtime operation	42	1008	109						110266	MWh	
Hardware, Beam commissioning	30	720		139					100079	MWh	
MD	20	480			177				85196	MWh	
technical stop	10	240				87			20985	MWh	
Shutdown	120	2880					6	69	199872	MWh	
Energy consumption / year	365	8760							1.52	TWh	
Average power									174	MW	
JP. Burnet, FCC Week 2022		CER	N Meyrin,	SPS, FCC		Z	W	Н	TT		
			Bear	Beam energy (GeV)			45.6	80	120	182.5	
incl. CERN	site 8	ፏ SPS	Ener	Energy consumption (TWh/v)			1.82	1 92	2.09	2 54	

powered by mix of renewable & other C-free sources

Energy consumption (TWh/y)

https://www.carbonbrief.org/

1.82

2.54

sustainability compared with other Higgs factories

TWh / year for the "Higgs factory" centre-of-mass energy

 \sqrt{s} = 240 GeV for CEPC/FCC-ee, 250 GeV for ILC/C³, 380 GeV for CLIC

CLIC	ILC	C 3	FCC-ee	CEPC
8.0	0.9	0.9	1.1	2.0

Patrick Janot

https://indico.cern.ch/event/1178975/

P. Janot and A. Blondel, *The carbon footprint of proposed* e+e- *Higgs factories*, arXiv 2208.10466 (2022); https://arxiv.org/abs/2208.10466

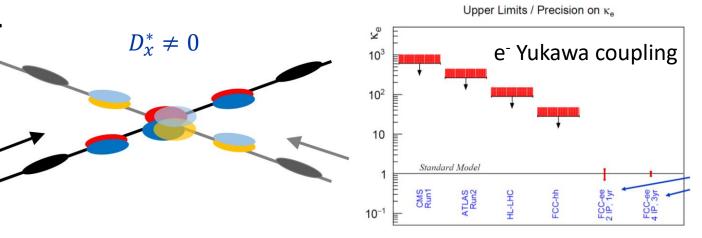
Energy consumption in MWh / Higgs

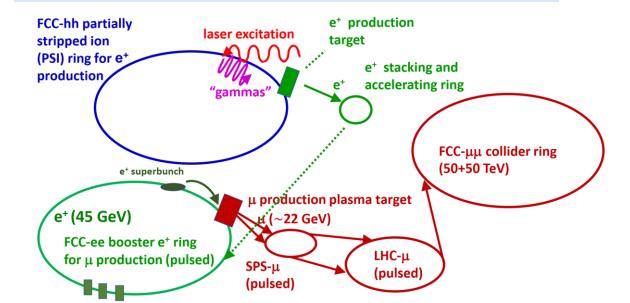
CLIC	ILC	C 3	CEPC	FCC-ee
30	20	21	10	3.3

becomes 2 MWh / Higgs for FCC-ee with 4 IPs

Present carbon footprint for electrical energy in tons CO₂ / Higgs

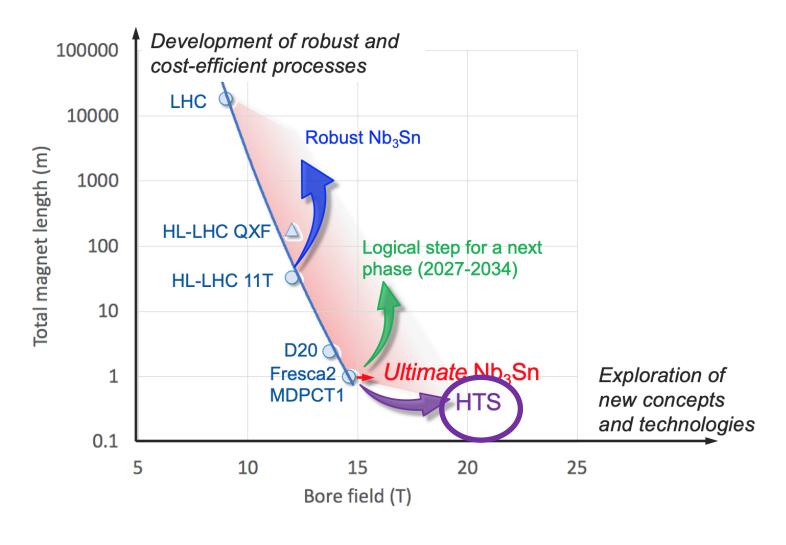
CLIC@CERN	ILC@KEK	C³@FNAL	CEPC@China	FCC-ee@CERN
2.1	7.8	8.5	6.1	0.24


o.14 ton CO₂ / Higgs for FCC-ee with 4 IPs


future upgrades and uses

- FCC-ee: not only Higgs, but Z and W factory (TeraZ); tt upgrade (~1 BCHF).
- optional direct s-channel Higgs production at 125 GeV with monochromatization
- civil construction & technical infrastructures shared with [and prepare] 100 TeV hadron collider FCC -hh – stage 2 of FCC integrated program (next slide)
- numerous other possible extensions (ep/eA/AA, Gamma Factory, LEMMA-type μ collider FCCμμ? ..., ERL upgrade? ...)

A. Faus-Golfe et al., Eur. Phys. J. Plus, 137 (2022) 31

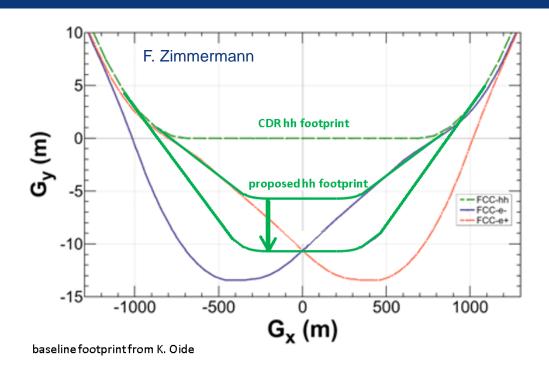

F. Zimmermann et al., PAC'22, Bangkok, WEPOST009

preparing for FCC stage 2 (FCC-hh)

In parallel to FCC studies, High Field Magnet development program as long-term separate R&D project

CERN budget for high-field magnets doubled in 2020 Medium-Term Plan (~ 200 MCHF over ten years)

Main R&D activities:

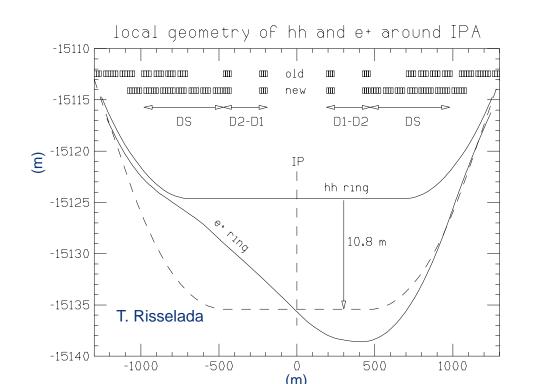

- □ materials: goal is ~16 T for Nb₃Sn, at least ~20 T for HTS inserts
- magnet technology: engineering, mechanical robustness, insulating materials, field quality
- production of models and prototypes: to demonstrate material, design and engineering choices,
 - industrialisation and costs
- ☐ infrastructure and test stations: for tests up to ~ 20 T and 20-50 kA

Detailed deliverables and timescale being defined through Accelerator R&D roadmap under development

L. Bottura, F. Gianotti, A. Siemko

layout optimisation of high-luminosity insertions

Implementation of an improved layout with FCC-ee & FCC-hh IPs with same transverse positions

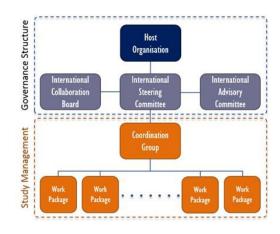

Advantages:

- Transverse size of detector cavern reduced
- Tunnel width reduced over 2 x 500 m
- Potential re-use of FCC-ee detector magnets for FCC-hh

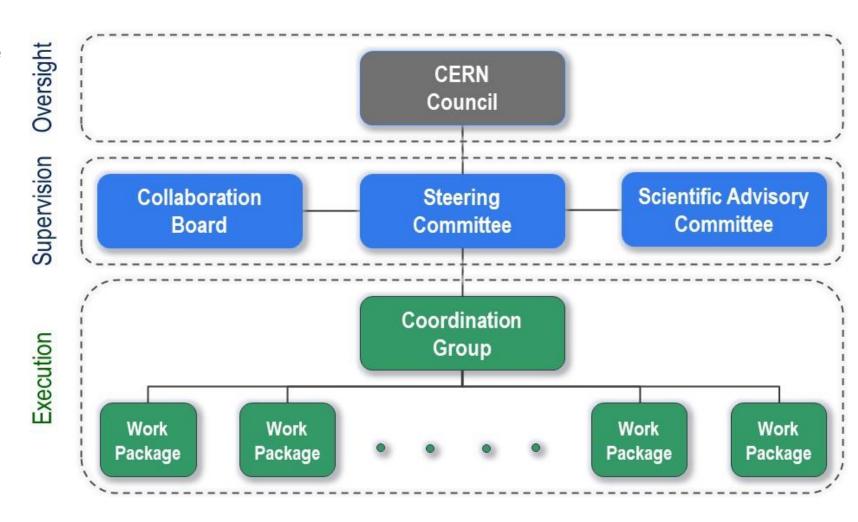
In CDR:

- Due to FCC-ee asymmetric IR layout, transverse displacement of IPs for FCC-ee and FCC-hh.
- FCC-hh footprint compatible with FCC-ee injector

Massimo Giovannozzi & Thys Risselada

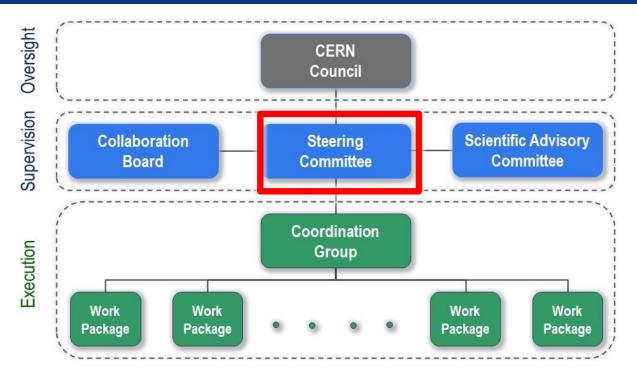

Stage 2: FCC-hh (pp) collider parameters

parameter	FCC-hh		HL-LHC	LHC
collision energy cms [TeV]	100		14	14
dipole field [T]	~17 (~16 co	mb.function)	8.33	8.33
circumference [km]	91	.2	26.7	26.7
beam current [A]	0.	.5	1.1	0.58
bunch intensity [10 ¹¹]	1	1	2.2	1.15
bunch spacing [ns]	25	25	25	25
synchr. rad. power / ring [kW]	2700		7.3	3.6
SR power / length [W/m/ap.]	32	2.1	0.33	0.17
long. emit. damping time [h]	0.4	45	12.9	12.9
beta* [m]	1.1	0.3	0.15 (min.)	0.55
normalized emittance [μm]	2.	.2	2.5	3.75
peak luminosity [10 ³⁴ cm ⁻² s ⁻¹]	5	30	5 (lev.)	1
events/bunch crossing	170	1000	132	27
stored energy/beam [GJ]	7.	.8	0.7	0.36



FCC Feasibility Study - organisational structure

 New structure very similar to the first phase of the FCC Study (2014-2020), leading to the Conceptual Design Report as input to the ESPPU.



 Classical structure common to CERN projects.

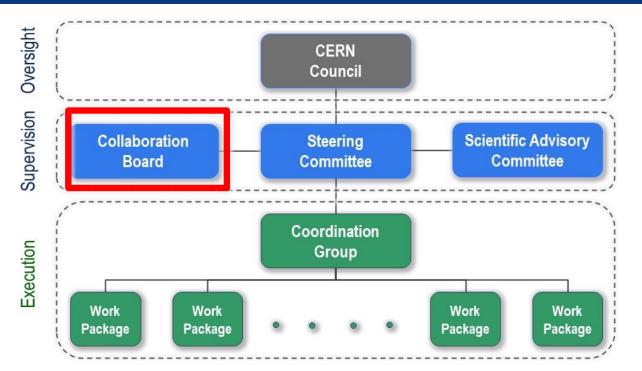
FCC Steering Committee (SC)

SC provides organisational & technical supervision for execution of the Feasibility Study

Members:

- CERN DG (SC Chair),
- The members of the CERN Directorate,
- the Chair of the CB,
- and up to 5 members nominated by the CB,
- the FCC Study Leader w/o voting rights
- the Council president as observer

Fabiola Gianotti (CERN, Chair), Raphaël Bello (CERN), Mike Lamont (CERN), Joachim Mnich (CERN), Charlotte Warakaulle (CERN)


Philippe Chomaz (CEA), Marina Cobal (INFN), Beate Heinemann (DESY), Tadashi Koseki (KEK), Lia Merminga (FNAL), Mike Seidel (PSI)

Michael Benedikt (CERN)

Eliezer Rabinovici (Hebrew U.)

Collaboration Board (CB)

CB reviews the work needs and resource requirements and their sharing among the participating institutes; appoints up to five members of the Steering Committee from among the participating institutes.

Members:

one representative per institute contributing to the Feasibility Study, having signed the FCC MoU and whose participation has been approved by the Collaboration Board;

Elected Chair: Philippe Chomaz (CEA)

CB executive committee: Manuela Boscolo (INFN), Andy Lankford (UCI)

EU Projects NN

FCC Feasibility Study

Collaboration building

Study Support and Coordination Emmanuel Tsesmelis

Communications Panagiotis Charitos, James Gillies

Study Leader: Michael Benedikt Deputy Study Leader: Frank Zimmermann **Study Support Unit**

IT: Sylvain Girod Procurement: Adam Horridge Quality management: NN Resources: Sylvie Prodon Scheduling: NN Secretariat: Julie Hadre

Physics, Experiments and **Detectors**

Patrick Janot, Christophe Grojean

Physics programme Matthew McCullough, Frank Simon

> **Detector concept** Mogens Dam

Physics performance

Patrizia Azzi, Emmanuel Perez

Software and computing Gerardo Ganis. Clément Helsens

Accelerators

Tor Raubenheimer Frank Zimmermann

FCC-ee collider design

Katsunobu Oide

FCC-hh design

Massimo Giovannozzi

Technology R&D

Roberto Losito

FCC-ee booster design

Antoine Chancé

FCC-ee injector

Paolo Craievich, Alexej Grudiev

FCC-ee energy calibration polarization Alain Blondel, Jorg Wenninger

FCC-ee MDI

Manuela Boscolo, Mike Sullivan

Technical Infrastructures

Klaus Hanke

Integration

Jean-Pierre Corso

Geodesy & survey

Hélène Mainaud Durand

Electricity and energy management

Jean-Paul Burnet

Cooling and ventilation

Guillermo Peon

Cryogenics systems

Laurent Delprat

Computing and controls infrastructure, communication and network

Pablo Saiz

Safety

Thomas Otto

Operation, maintenance, availability, reliability

Jesper Nielsen

Transport, installation concepts

Roberto Rinaldesi

Host State processes and civil engineering

Timothy Watson

Administrative processes

Friedemann Eder

Placement studies

Johannes Gutleber, Volker Mertens

Environmental evaluation

Johannes Gutleber

Tunnel, subsurface design

John Osborne

Surface sites layout, access and building design

LD opening

Organisation and financing models

Paul Collier (interim), Florian Sonnemann

Project organisation model

NN

Financing model

Florian Sonnemann

Procurement strategy and rules

NN

In-kind contributions

NN

Operation model

Paul Collier, Jorg Wenninger

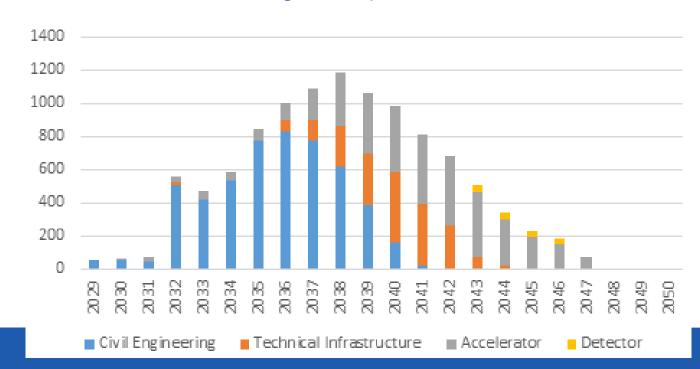
Status of Global FCC Collaboration

Increasing international collaboration as a prerequisite for success:

links with science, research & development and high-tech industry will be essential to further advance and prepare the implementation of FCC

FCC Feasibility Study: 58 fully-signed previous members, 17 new members. Mol I renewal of remaining CDR participants in progress.

FCC-ee Project Cost Profile - preliminary


Construction cost estimate for FCC-ee (from CDR 2018, update in 2025)

- Machine configurations for Z, W, H working points included
- Baseline configuration with 2 detectors
- CERN contribution to 2 experiments incl.

cost category	[MCHF]	%
civil engineering	5.400	50
technical infrastructure	2.000	18
accelerator	3.300	30
detector	200	2
total cost (2018 prices)	10.900	100

Spending profile for FCC-ee

- CE construction 2032 2040
- Technical infrastructure 2037 2043
- Accelerator and experiment 2032 2045
- Commissioning and operation start 2045 -2048.

two topical reviews planned for early October 2022

#1: FCC-ee SRF Systems Layout with Associated CE and TI Concepts

Overall concept for RF system installation and evolution for FCC-ee, including the associated integration and technical infrastructure systems. The following aspects need to be considered and should be addressed in the presentations.

#2: CE & TI Requirements for FCC Experimental Sites

Surface and underground CE and TI requirements, implied by the principal detector concepts (in particular detector magnets and main support structures) of both FCC-ee and FCC-hh, for construction, installation, operation and maintenance phases.

Outlook

Comprehensive R&D program and implementation preparation is presently being carried out in the frameworks of FCC FS, the EU co-financed FCC Innovation Study, the Swiss CHART program, and the CERN High-Field Magnet Programme. Goal: demonstrate FCC feasibility by 2025/26

Plenty of opportunities for collaborations (incl. DAFNE, EIC, SuperKEKB/Belle II,...) and for **joint innovative developments** with int'l partners!

The first stage of FCC could be approved within a few years after the 2027 European Strategy Update, if the latter is supportive. Tunnel construction could then start in the early 2030s and FCC-ee physics program begin in the second half of the 2040s, a few years after the completion of the HL-LHC physics runs expected by 2041.

Long term goal: world-leading HEP infrastructure for 21st century to push particle-physics precision and energy frontiers far beyond present limits

