Tor Raubenheimer

SPACE FOR ADDITIONAL LOGOS

FCC ACCELERATOR and OPERATIONS

Introduction

- FCC-ee fills need for a precision EW/Higgs factory while setting stage for a 100 TeV p-p collider in the future
 - FCC infrastructure will support a century of physics
- Very high luminosity precision study of Z and H
 2×10³⁶ cm⁻²s⁻¹/IP at Z and 7×10³⁴ cm⁻²s⁻¹ at Zh
- Low-risk technical solution based on 60 years of e⁺e⁻ circular colliders and particle detectors
 - R&D on components for improved performance but no need for "demonstration" facilities
- Utility requirements similar to CERN existing use

FCC-ee Luminosity

- FCC-ee efficient L from Z to *tT*
 - Thanks to twin-aperture magnets, SRF, efficient RF power, top-off injection
- Accumulate >2.5 ab⁻¹ with ~0.5x10⁶ H produced per IP
- Accumulate >75 ab⁻¹ with ~2x10¹² Z produced per IP
- Run plan naturally starts at Z but is under discussion

Luminosity vs. electricity consumption

Highest lumi per AC site power of all proposals Electricity cost ~200 CHF per Higgs boson

Challenges and Drivers

- High beam energy → large circumference to reduce synchrotron radiation and strong luminosity dependance on energy
 - Large circumference → challenging tuning and tolerances and long runs for facilities
 - Tunnel radiation \rightarrow may limit in-tunnel electronics
- High luminosity
 → strong beam-beam with beamstrahlung and reduced lifetimes
 - High beam current → large RF power with collective instabilities and collimation
 - Requires top-up injection and large dynamic aperture

Outline

- Overall requirements and status
- Parameters
- Main e+/e- rings beam optics
- Collective effects, Dynamic aperture, Injection, Collimation, ...
- Full-energy booster and e+/e- injector
- MDI and integration

Accelerator Design Status

- New 91 km circumference placement with 8 access points
- Layout with 4 IP's that is consistent with upgrade to FCC-hh
- Optimizing allocation of straight sections
- New FCC-ee optics to optimize beam-beam
- 400 MHz and 800 MHz RF systems
- Starting tunnel integration studies for RF and Arc sections
- Full energy booster that will fit in FCC tunnel for top-up injection
- e+ / e- injector to fill booster 24 / 7

Basic Design Choices

- Double ring e+e- collider
- **Common footprint with FCC-hh**, except around IPs
- Asymmetric IR layout and optics to limit synchrotron radiation towards the detector
- Perfect 4-fold superperiodicity allowing 2 or 4 IPs; large horizontal crossing angle 30 mrad, crab-waist collision optics
- Synchrotron radiation power 50 MW/beam at all beam energies
- **Top-up injection** scheme for high luminosity Requires **booster synchrotron in collider tunnel**

100 TeV FCC-hh

- 16T CF dipoles (or 17T SF dipoles)
- Layout like LHC but with four-fold symmetry (up to 4 IP's)
- Compatible with LHC or upgraded SPS as Injector
- Portion of transfer lines in the ring tunnel
- Circumference of 91.1 km
- 400.8 MHz RF 121800 harmonic consistent with SPS & LHC and multiple uniform bunch spacings

FCC-ee layout consistent with FCC-hh

C FCC EPOL Workshop, September 19-30, 2022 FCC-ee Parameters

Beam energy		[GeV]	45.6	80	120	182.5							
Layout				PA31	-1.0								
# of IPs				4	4								
Circumference		[km]	91.174117 91.174107										
Bending radius of	arc dipole	[km]		9.9	37								
Energy loss / turn		[GeV]	0.0391	0.370	1.869	10.0							
SR power / beam		[MW]		50)								
Beam current		[mA]	1280	135	26.7	5.00							
Bunches / beam			10000	880	248	40							
Bunch population		$[10^{11}]$	2.43	2.91	2.04	2.37							
Horizontal emittan	ice ε_x	[nm]	0.71	2.16	0.64	1.49							
Vertical emittance	ε_y	[pm]	1.42	4.32	1.29	2.98							
Arc cell			Long 9	90/90	90,	/90							
Momentum compa	ction α_p	$[10^{-6}]$	28	.5	7.33								
Arc sextupole families			75	5	146								
$\beta^*_{x/y}$		[mm]	100 / 0.8	200 / 1.0	300 / 1.0	1000 / 1.6							
$\beta_{x/y}^*$ Transverse tunes/IP $Q_{x/y}$			53.563 /	53.600	100.565	/ 98.595							
Energy spread (SR	$(BS) \sigma_{\delta}$	[%]	0.038 / 0.132	0.069 / 0.154	0.103 / 0.185	0.157 / 0.221							
Bunch length (SR/	(BS) σ_z	[mm]	4.38 / 15.4	3.55 / 8.01	3.34 / 6.00	1.95 / 2.75							
RF voltage 400/80	0 MHz	[GV]	0.120 / 0	1.0 / 0	2.08 / 0	2.5 / 8.8							
Harmonic number	for 400 MHz		121648										
RF freuquency (40	0 MHz)	MHz	399.99	4581	399.994627								
Synchrotron tune	Q_s		0.0370	0.0801	0.0328	0.0826							
Long. damping tin	ne	[turns]	1168	217	64.5	18.5							
RF acceptance		[%]	1.6	3.4	1.9	3.0							
Energy acceptance	(DA)	[%]	± 1.3	± 1.3	± 1.7	-2.8 + 2.5							
Beam-beam ξ_x/ξ_y^{a}	1		0.0023 / 0.135	0.011 / 0.125	0.014 / 0.131	0.093 / 0.140							
Luminosity / IP		$[10^{34}/cm^2s]$	182	19.4	7.26	1.25							
Lifetime $(q + BS)$		[sec]			1065	4062							
Lifetime (lum)		[sec]	1129	1070	596	744							

FCC-ee Arc FODO optics

- Configuration for arc optics with long ~100 m cells at Z & W and short ~50 m cells at Zh and t-tbar
 - \circ Reduces $ε_x$ at high E and increases $α_c$ at low E 90°/90° : $t\bar{t}, Zh$ Long 90°/90° : Z, W

K. Oide

FCC-ee IR optics

- Novel 'virtual' crab waist combining local vertical chromaticity correction
 - Crab waist was demonstrated at DAFNE
 - Crab waist is also being used at SuperKEKB
- Optimized optics configurations for each of the 4 working points

CDR optics, ttbar 182.5 GeV

FCC-ee IR geometry

- FCC-ee and FCC-hh IP's moved to same location to reduce IR tunnel width
- Asymmetric IR layout is chosen to minimize the incoming synchrotron radiation

- $\odot~$ Photon E_{crit} < 100 keV from magnets within ~500 m of IP
- Collimators and masks further protect detectors
- Optimization is ongoing as part of MDI effort

FCC-ee Beam-Beam

- Beam-beam at high luminosity drives the ring parameters
- Updating beam-beam calculations and developing impedance model for the ring based on vacuum components

D. Shatilov, M. Migliorati

2500

2000

1500

1000

500

FCC-ee Dynamic Aperture

No error

- Large dynamic aperture is needed for top-up injection and lifetime due to high beamstrahlung energy tails
 - Dynamic aperture optimized with ~150 families of sextupoles
 - \circ $\,$ Aperture is good without errors but still need to improve error correction $\,$

FCC-ee Collective effects

- Single bunch instabilities calculated with impedance, beambeam, and ring optics but there is complicated interplay
 - Longitudinal wake and beam-beam constrains tunes
 - Beam-beam stabilizes the transverse mode-coupling instability
 - Longitudinal wake also likely modifies the mode-coupling instability
- Multibunch instabilities constrain bunch spacing
 - Requires low SEY on vacuum chamber
 - Damped RF cavities and electron cloud limits $\Delta t \ge 15$ ns
- Large ring circumference limits feedback gain
 - Developing integrated simulations for collective effects with feedback

FCC-ee SRF Systems

- Baseline uses established SRF technologies in use at CERN
- 800 MHz for booster and 400 MHz at Z, W, Zh while adding 800 MHz at t-tbar
 - Z with very high current \rightarrow 120 MV of low frequency (400 MHz) single-cell cavities with RF dedicated to e+ or e-
 - Upgrade to 2-cell cavities at W with 1 GV in each ring
 - Increase to 2.1 GV shared between e+ and e- at Zh
 - Add 9 GV of 5-cell 800 MHz to e+ and e- rings along with a total of 11 GV 800 MHz for the booster
- Consider more aggressive options as alternates in future

FCC-ee SRF Systems

24th May 2022	Z		W	1		н	ttbar2						
	per beam booster		per beam	booster	2 beams	booster	2 beams	2 beams	booster				
Frequency [MHz]	400 800 4		400	800	400	800	400	800	800				
RF voltage [MV]	120	140	1000	1000	2480	2480	2480	9190	11670				
Eacc [MV/m]	5.72	6.23	11.91	24.26	11.82	25.45	11.82	24.52	25.11				
# cell / cav	1	5	2	5	2	5	2	5	5				
Vcavity [MV]	2.14	5.83	8.93	22.73	8.86	23.85	8.86	22.98	23.53				
#cells	56	120	224	220	560	520	560	2000	2480				
# cavities	56	24	112	44	280	104	280	400	496				
# CM	14	6	28	11	70	26	70	100	124				
T operation [K]	4.5	2	4.5	2	4.5	2	4.5	2	2				
dyn losses/cav [W]	19	0.5	174	7	171	8	171	51	8				
stat losses/cav [W]	8	8	8	8	8	8	8	8	8				
Qext	6.6E+04	3.2E+05	1.2E+06	8.9E+06	1.5E+06	1.2E+07	8.3E+06	4.9E+06	5.3E+07				
Detuning [kHz]	8.939	4.393	0.430	0.115	0.123	0.031	0.025	0.040	0.005				
Pcav [kW]	880	205	440	112	352	95	62	207	20				
rhob [m]	9937	9937	9937	9937	9937	9937	9937	9937	9937				
Energy [GeV]	45.6	45.6	80.0	80.0	120.0	120.0	18	2.5	182.5				
energy loss [MV]	38.49	38.49	364.63	364.63	1845.94	1845.94	987	5.14	9875.14				
cos phi	0.32	0.27	0.36	0.36	0.74	0.74	0.70	0.90	0.85				
Beam current [A]	1.280	0.128	0.135	0.0135	0.0534	0.005	0.010	0.001					

FCC-ee Injector

- Design concept being developed with PSI
 - High brightness e- source and efficient e+ source with damping ring to generate pairs of 6 GeV bunches at 200 Hz (for Z)
 - Acceleration to Booster at ~20 GeV in SPS or high energy linac

FCC-ee Full-energy booster

- Full-energy booster will enable top-up injection
 - Ramps from 20 GeV to main ring energy in a second
 - Damps incoming emittance from Injector to match main rings
 - Layout matches main ring cell structure although location in IR uncertain

FCC-ee MDI and IR design

 Complicated integration with SC quadrupoles, solenoids, IR chamber, LumiCal, shielding, and diagnostics

M. Boscolo

FCC-ee Integration

• Working on integration of RF regions and Arc cell

TOTAL RF LENGTH: 2014,4 m

 \cap

FCC-ee Alternative technologies

- Developing technologies with significant potential impact in parallel to baseline, e.g.
 Changes in the spacings & lengths
 - HTS arc quadrupole/sextupole
 - HE linac as a pre-booster
 - High Q₀ damped SRF cavities
 - High efficiency RF power sources
 - Positron target using crystal channeling
 - Advanced cooling tower design

Combined function HTS magnet

23

FCC accelerator summary and timeline

- Finalizing layouts with correct circumference
- FCC-ee baseline parameters are being established
 - Main ring substems, full-energy booster, and injector all being defined
- Technical systems making good progress
 - Vacuum, magnets, SRF, cryogenics, diagnostics, integration, ...
- Luminosity requires all systems work together in large facility
 - Still many challenges in developing robust integrated design
- Will have baseline established in 2023 and optimize further to complete feasibility study at end of 2025

																					-			-
-				Ş	SP	AC	E	F	OF	R A	۱D	D١	ΓIC	٦V	IAI	LL	0	G	CS					
۰.																								

Thank you for your attention.