Overview: Status and goals WP2 (let me split hairs....)

K. Oide

Sep. 19, 2022 @ 2nd FCC Polarization Workshop

Many thanks to A. Blondel, J. Keintzel, D. Shatilov, J. Wenninger, and all FCC-ee/FCCIS colleagues

Questions:

- measuring the spin tune of the pilot bunches.
- from the colliding bunches:

@Z
Collision
Bunches/beam
Particles/bunch
Energy spread
Bunch length
$\varepsilon_y/\varepsilon_x$
top-up

- colliding bunches from the pilot bunches, in general.
 - knobs, various feedbacks, etc.

• I may have several naïve questions, as colliding bunches are different

	pilot	colliding		
	N	Y		
	~ 100	10000		
10^{10}	~ 1	24.3		
10^{-4}	3.8	13.2		
mm	4.38	15.4		
%	$\ll 0.2$	0.2		
	N	Y		

• So the beam orbit, energy, dispersions, emittance can be different in

• Esp. with impedances, top-up injection, orbit/dispersion/coupling

"latest" parameters

Beam energy	[GeV]	45.6	80	120	182.5	
Layout		PA31-1.0				
# of IPs		4				
Circumference	$[\mathrm{km}]$	91.174117 91.1			74107	
Bending radius of arc dipole	$[\mathrm{km}]$	9.937				
Energy loss / turn	[GeV]	0.0391	0.370	1.869	10.0	
SR power / beam	[MW]	50				
Beam current	[mA]	1280	135	26.7	5.00	
Bunches / beam		10000	880	248	40	
Bunch population	$[10^{11}]$	2.43	2.91	2.04	2.37	
Horizontal emittance ε_x	[nm]	0.71	2.16	0.64	1.49	
Vertical emittance ε_y	[pm]	1.42	4.32	1.29	2.98	
Arc cell		Long 90/90 90/90				
Momentum compaction α_p	$[10^{-6}]$	28.5 7.33				
Arc sextupole families		75		146		
$\beta^*_{x/y}$	[mm]	100 / 0.8	200 / 1.0	300 / 1.0	1000 / 1.6	
Transverse tunes/IP $Q_{x/y}$		53.563 / 53.600		$100.565 \ / \ 98.595$		
Energy spread (SR/BS) σ_{δ}	[%]	$0.038 \ / \ 0.132$	0.069 / 0.154	0.103 / 0.185	$0.157 \ / \ 0.221$	
Bunch length (SR/BS) σ_z	[mm]	4.38 / 15.4	3.55 / 8.01	$3.34 \ / \ 6.00$	$1.95 \ / \ 2.75$	
RF voltage $400/800$ MHz	[GV]	0.120 / 0	1.0 / 0	2.08 / 0	$2.5 \ / \ 8.8$	
Harmonic number for 400 MHz		121648				
RF freuquency (400 MHz)	MHz	399.994581		399.994627		
Synchrotron tune Q_s		0.0370	0.0801	0.0328	0.0826	
Long. damping time	[turns]	1168	217	64.5	18.5	
RF acceptance	[%]	1.6	3.4	1.9	3.0	
Energy acceptance (DA)	[%]	± 1.3	± 1.3	± 1.7	-2.8 + 2.5	
Beam-beam ξ_x/ξ_y^a		0.0023 / 0.135	0.011 / 0.125	0.014 / 0.131	$0.093 \ / \ 0.140$	
Luminosity / IP	$[10^{34}/{\rm cm^2 s}]$	182	19.4	7.26	1.25	
Lifetime $(q + BS)$	[sec]	_		1065	4062	
Lifetime (lum)	[sec]	1129	1070	596	744	

Energy sawtooth → J. Keintzel

- between 4 IPs.

 Only 1 RF station/per ring at the same straight section for both beams. • The center of mass at each IP (≈IP1+IP4, IP2+IP3) will be nearly the same

K. Oide, Sep. 19, 2022 4

Tapering

- However, this definition is in *underdetermination*.
 - condition.
- discussions.

All satisfy the tapering condition.

• "Tapering" is to scale the magnetic fields with the local energy of the beam.

• For instance, any one of above energy sawtooth satisfies the tapering

• So to avoid the complexity, let us *turn off tapering* in the following

Beam energy deviation due to machine errors

FCCee_z_530_nosol_23_al_pol_1.sad $a_S \equiv 2/\gamma_0(g-2)$

- Machine errors may change the beam energy.
- For example, here we set random field error in arc dipole field by 10^{-4} , and horizontal misalignment of all quads (except QC{12} around each IP) + "ideal" orbit correction.
 - Then for the pilot bunches, the beam energy at 4 IPs deviate, but they are well lacksquarecorrectable using the spin tune measurement.
 - The residual after the pilot bunch correction, the variation is well below 0.5 ppm.

Beam energy deviation due to machine errors with beam-beam, beamstrahlung \rightarrow D. Shatilov

- If a toy model of the beam-beam & beamstrahlung is applied to each IP, there appear deviations of beam energy at each IP.
- However, the center of mass energy (≈IP1+IP4, IP2+IP3) still look close to 0, and well scales with the spin tune.
- The residual error after scaling seems below 0.5 ppm, if all beamstrahlungs are identical at four IPs.

Vertical dispersion at IP

It is known^a that the spread of the center-of-mass energy, divided by the beam energy, is written as

$$\sigma_{E_{\rm CM}}^2 = 2\sigma_{\epsilon}^2 \left[1 + (D_{y1}^* + D_{y2}^*)^2 \frac{\sigma_{\epsilon}^2}{\sigma_y^{*2}} \right] , \qquad (1)$$

where σ_{ϵ} and σ_{y} are the beam energy spread and the vertical beam size, which we have assumed equal for both beams. The vertical dispersions are $D_{y1,2}^*$. Then we can consider two extremes:

$$\sigma_{E_{\rm CM}}^{2} = \begin{cases} 2\sigma_{\epsilon}^{2} & (D_{y1}^{*} = -D_{y2}^{*}), \\ 2\sigma_{\epsilon}^{2} \left[1 + \frac{4D_{y}^{*2}\sigma_{\epsilon}^{2}}{\sigma_{y}^{*2}}\right] & (D_{y1}^{*} = D_{y2}^{*} = D_{y}^{*}). \end{cases}$$
(2)
nce
$$\sigma_{y}^{*2} = \sigma_{y\beta}^{2} + D_{y}^{*2}\sigma_{\epsilon}^{2}, \qquad (3)$$

On the other hand sin

we can say

 $2\sigma_{\epsilon}^2 \leq$

coupling bump orbits in the arc without dispersion leak are necessary.

^aJ.M. Jowett, J. Wenninger, J. Yamartino, CERN SL/Note 95–46 (May 1995)

$$\{\sigma_{E_{\rm CM}}^2 \le 10\sigma_{\epsilon}^2 \,. \tag{4}$$

Therefore to minimize σ_{ϵ}^2 , two strategies are possible: (1) make the IP dispersion antisymmetric and/or (2) reduce the vertical dispersion at the IP as small as possible. Both can be done by a vertical dispersion knob at the IP. Also to adjust the vertical beam sizes at the IP, knobs with

Vertical dispersion at IP

- collision offset at the IP, etc.

FCCee_z_530_nosol_23_al_bb_1.sad

• The beam-beam focusing changes the vertical dispersion at the IP. • The amount depends on the residual dispersion without beam-beam,

• An example above shows an enhancement of the vertical dispersion at t each IP, assuming random vertical misalignments of arc sexts to produce $\varepsilon_v = 0.7 \,\mathrm{pm}$, together with random vertical offset at each IP by $0.1 \sigma_v^*$.

K. Oide, Sep. 19, 2022 9

Dispersion measurement

- Dispersion measurements for non-colliding beam is easily done by a shift of RF frequency, for instance.
- However, it is only possible at low current. We cannot store non-colliding high current beam without collision due to instabilities. \rightarrow E. Carideo
- Measurement for colliding bunches will be very difficult, as it violates the collision conditions to cause the 6D flip-flop.
- String high current also changes everything: orbit, optics, dispersion, etc.
- The only possibility is to measure the dispersion by exciting the synchrotron motion of the pilot bunches, by special deflector (either longitudinal or transverse at a dispersive location).

Top-up injection

- The top-up injection shakes the colliding bunches periodically, transversely or longitudinally.
- Then either the bunch-by-bunch or narrowband feedbacks tries to damp such oscillations. Esp. the narrow band feedback shakes the pilot bunches. The magnitude must be estimated.
- Such disturbance on the pilot bunches may affect the spin tune measurement.
- It is not possible to suspend the injection, since the delicate balance between two or *four* colliding bunches easily breaks to result in unrecoverable 6D flip-flop.

Summary

- A few questions are mentioned.
- There are more:
 - How do we generate the necessary vertical emittance:
 - a closed emittance bump through arc, without affecting the IP dispersion/coupling.
 - The effect of global deformation of the tunnel and the ring on the spin tune.

 \bullet . . .

Some of them might have been already answered by you.

