WG₄ – Status and Goals

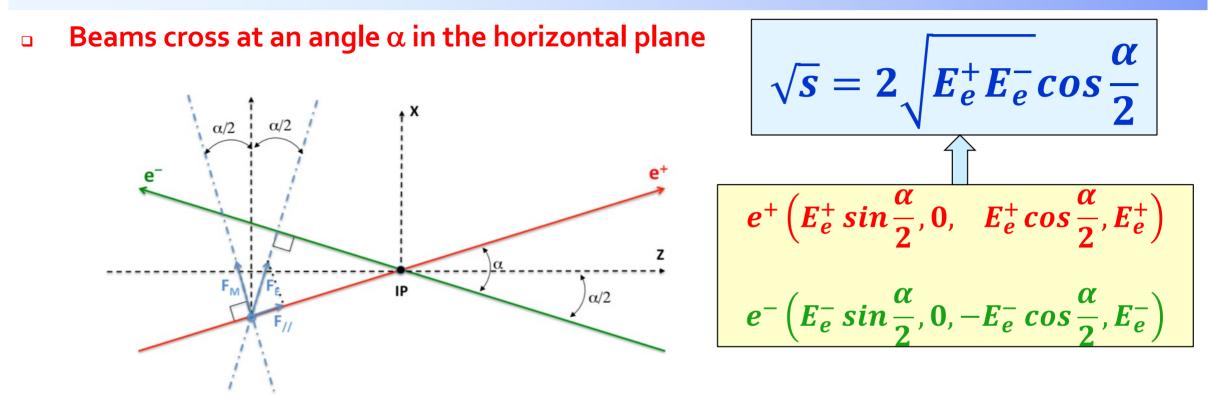
- WG4 = (EPOL) Measurements in particle-physics experiments
 - Status of
 - Centre-of-mass energy absolute determination
 - Centre-of-mass energy relative determination (a.k.a. point-to-point)
 - Crossing angle and centre-of-mass energy
 - Centre-of-mass energy
 - Absolute angle determination
 - QED predictions

Status mostly unchanged since arXiv:1909.12245

• Main goal of the workshop : Get new and young physicists interested in these studies

EPOL workshop

19 Sept 2022

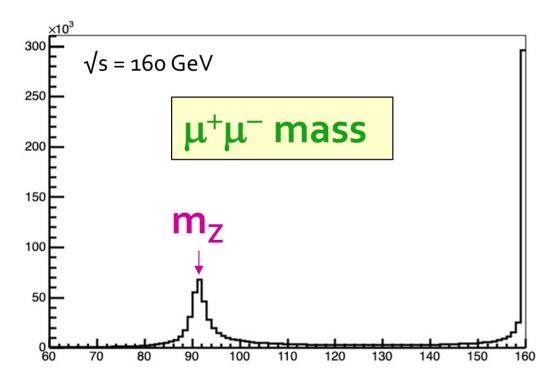

- Restart, reproduce, improve, and complete existing studies
- Develop new studies to improve the precision
- Main goals of these studies
 - Precision EW / Higgs / top measurements

FCC-ee precision measurements

	Strong √s depender	nce at all centr	e-of-mas	gies! Table f	Table from arXiv:2106.13885			
	Observable	present	FCC-ee	FCC-ee	Comment and	Or is it 0.15 MeV?		
		value \pm error	Stat.	Syst.	leading exp. error			
\sqrt{s}	$m_{\rm Z} \; ({\rm keV})$	91186700 ± 2200	4	100	From Z line shape scan Beam energy calibration			
Spread	$\Gamma_{\rm Z} \ ({\rm keV})$	2495200 ± 2300	4	25	From Z line shape scan Beam energy calibration			
\sqrt{s}	$\sin^2 \theta_{\rm W}^{\rm eff}(\times 10^6)$	231480 ± 160	2	2.4	from $A_{FB}^{\mu\mu}$ at Z peak Beam energy calibration			
Spread	$1/\alpha_{\rm QED}({\rm m}_{\rm Z}^2)(\times 10^3)$	128952 ± 14	3	small	from $A_{FB}^{\mu\mu}$ off peak QED&EW errors dominate			
√s	$m_W (MeV)$	80350 ± 15	0.25	0.3	From WW threshold scar Beam energy calibration			
Spread	$\Gamma_{\rm W} ~({\rm MeV})$	2085 ± 42	1.2	0.3	From WW threshold scar Beam energy calibration			
√s	m _H (MeV)	125250 ± 170	2.5	0.8	From ZH direct reconstruction \sqrt{s} calibration	1/S ~ 7/.0 (1eV		
√s	m _{top} (MeV)	172740 ± 500	17	small	From tt threshold scar QCD errors dominate			
P. Jan	ot		EPOL works	shop		0		

Centre-of-mass energy √s

- Measure E_e^+ and E_e^- with Resonant Depolarization at $\sqrt{s} \sim m_Z$ and $2m_W$
 - Requires the measurement of the crossing angle α (either in situ, or "directly)
 - → WATCH OUT: α and E_e^{\pm} change when approaching the IP due to beam-beam "attraction"


See Emmanuel Perez' talk on Wednesday 21/09

• AND/OR Measure \sqrt{s} in situ with particle physics events

P. Janot

See Graham Wilson's talk on Wednesday 21/09 Also <u>arXiv:2209.03281</u>

- Above the Z pole (including at the WW threshold)
 - First possibility : use radiative returns to the Z pole, e.g., $e^+e^- \rightarrow \mu^+\mu^-(\gamma)$ (nitial state radiation

Four energy-momentum conservation equations

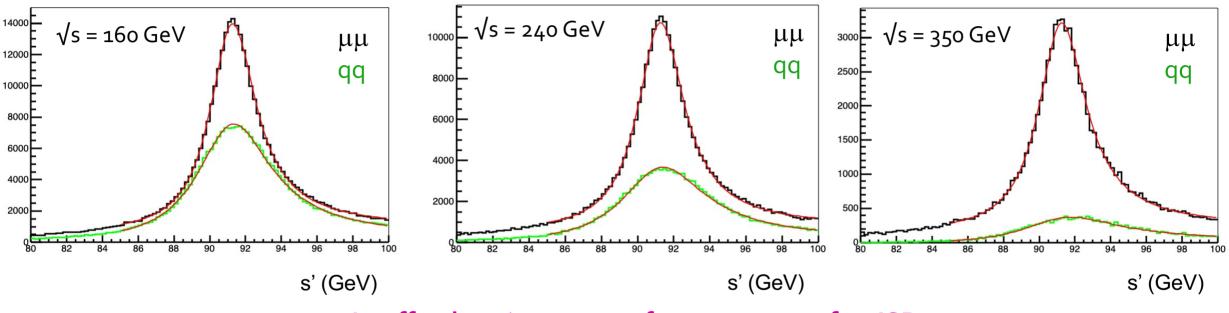
$$E^{+} \sin \theta^{+} \cos \varphi^{+} + E^{-} \sin \theta^{-} \cos \varphi^{-} + |p_{z}^{\gamma}| \tan \alpha/2 = \sqrt{s} \tan \alpha/2,$$

$$E^{+} \sin \theta^{+} \sin \varphi^{+} + E^{-} \sin \theta^{-} \sin \varphi^{-} = 0,$$

$$E^{+} \cos \theta^{+} + E^{-} \cos \theta^{-} + p_{z}^{\gamma} = \sqrt{s} \varepsilon,$$

$$E^{+} + E^{-} + |p_{z}^{\gamma}|/\cos \alpha/2 = \sqrt{s}/\cos \alpha/2,$$

$$(with \varepsilon = \frac{E_{e}^{+} - E_{e}^{-}}{E_{e}^{+} + E_{e}^{-}}, \text{ and with terms in } \varepsilon^{2} \text{ neglected: } s \rightarrow s(1-\varepsilon^{2})$$
One mass constraint (m_z)
Five unknowns (p_{z}^{\gamma}, \varepsilon, E^{+}, E^{-}, \sqrt{s})

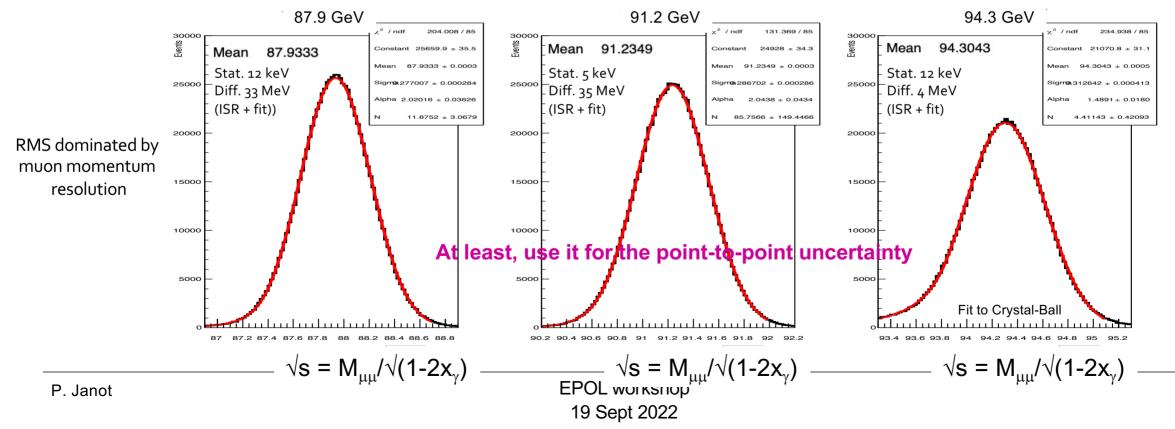

- In principle, can easily obtain \sqrt{s} just from the muon angle measurements
 - Exercise : Establish the above equations, and solve them, e.g., for \sqrt{s} !

- **•** First estimates with radiative returns: muons, electrons, taus, and jets can be used.
 - Muons: momenta above 10 GeV, polar angle above 10 degrees from the z axis
 - Use MC truth and smear muon angles by 0.1 mrad, s' between 80 and 100 GeV
 - Jets: Energies above 20 GeV, polar angle above 25 degrees from the z axis
 - Use MC truth and smear quark angles by 15 mrad, s' between 80 and 100 GeV

	√s	E _γ (GeV)	Ν _{μμ} (×10 ⁶)	N _{qq} (×10 ⁶)	σ _{√s} (μμ)	σ _{√s} (qq)	$\sigma_{\sqrt{s}}$ (EPOL)
12 ab -1	2m _W	54	47	667	900 keV	340 keV	300 keV
5 ab⁻¹	240 GeV	102	5.6	53	4.2 MeV	2.4 MeV	_
0.2 ab-1	2m _{top}	163	0.1	0.3	51 MeV	60 MeV	_

- Bonus: RDP available at the WW threshold, with similar precision (300 keV vs 280 keV)
 - RDP can be used to calibrate / validate the radiative return method
 - → And then use it at 240/350 GeV with confidence (1.7 / 25 MeV combined precision)

Examples of dimuon and dijet mass distributions (all done with 10⁶ events)


s' = effective e⁺e⁻ centre-of-mass energy after ISR

- Same fitting formula for all distributions (BW * 2nd order polynomial)
 - Systematic understanding at $\sqrt{s} = 160$ GeV may translate well to $\sqrt{s} = 240$ GeV
 - → Understanding of initial state radiation is crucial here: is its theoretical description already sufficient?

Multi-photon emission, photon energy spectrum, photon angular distribution

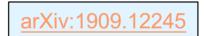
- At the top-pair threshold, use the 2 million WW events (+E,p conservation)
 - With known \sqrt{s} , can be used to measure the W mass with a statistical precision of 2.2 MeV
 - And even 1.1 MeV with the fully hadronic final state
 - → See Marina Béguin's thesis : <u>https://tel.archives-ouvertes.fr/tel-02490574</u>
 - Alternatively, with a known m_w (from the threshold measurement)
 - Can be used to measure \sqrt{s} with a precision of 10 MeV (5 MeV)
 - → Which translates to a top mass systematic uncertainty of 5 MeV (2.5 MeV)
 - According to Marina's thesis, the W mass is best measured at the WW threshold
 - With the cross-section lineshape (all final states used)
 - With direct reconstruction (from the lepton momentum with the semi-leptonic final state)
 - → Study performed with DELPHES, and its CLD parameterization
 - The colour reconnection effects in the fully hadronic final state should be controllable (?)
 - To better than 1 MeV with 100 million WW events collected at \sqrt{s} = 240 GeV
 - → Maybe also use ZZ events in the fully hadronic final state + knowledge of the Z mass?

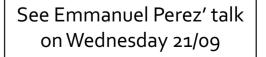
- At the Z pole, complement the RDP measurement with $e^+e^- \rightarrow \mu^+\mu^-$ (γ)
 - No radiative return to the Z (!), and therefore no Z mass constraint
 - The Z pole data are used to measure the Z mass, anyway ${\ensuremath{\mathfrak{O}}}$
 - Need to inject the muon momenta in the four energy-momentum conservation equations
 - With MC truth and smeared momenta according to $\Delta(1/p_T) / (1/p_T) = 4.10^{-3}$ (typical of CLD)

In situ \sqrt{s} measurements: Possible projects

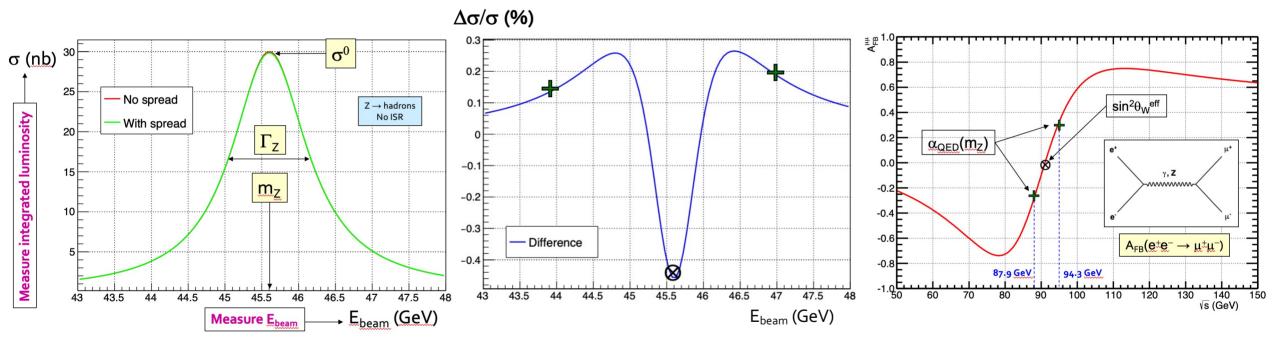
- At the Z pole
 - Understand how well ISR should be known to master the ~30 MeV excursion
 - Use better description of the detector concepts (CLD, IDEA)
 - With DELPHES (E. Leogrande started in 2019) and with full simulation
 - Propose and implement methods to calibrate the muon momenta (J/ ψ , K 0 _S?)
 - Assumed to be perfectly calibrated in the previous plots
- Above the Z pole

See Graham Wilson's talk on Wednesday 21/09


- Implement a credible analysis for the Zγ final state (a.k.a. radiative returns)
 - With all Z decays, with fast and full simulation, at all centre-of-mass energies
 - Systematic studies (ISR, etc.) and calibration feasibility at the WW threshold
 - Improve it at 240 and 350 GeV for a better statistical precision
- Repeat, cross check and improve Marina's W mass with direct reconstruction method
 - At the WW threshold, at 240 GeV, at the top-pair threshold
 - Possibly with full simulation as well, with complete systematic studies (col. reconnection, etc.)


In situ \sqrt{s} measurements: Possible projects

- At all centre-of-mass energies
 - Propose ways to measure the crossing angle "directly" with the required precision
 - Far from the IP (but after the last magnetic element)
 - Propose ways to measure the change of crossing angle at the IP "in situ"


$$\alpha = 2 \arcsin \left[\frac{\sin \left(\varphi^- - \varphi^+ \right) \sin \theta^+ \sin \theta^-}{\sin \varphi^- \sin \theta^- - \sin \varphi^+ \sin \theta^+} \right]$$

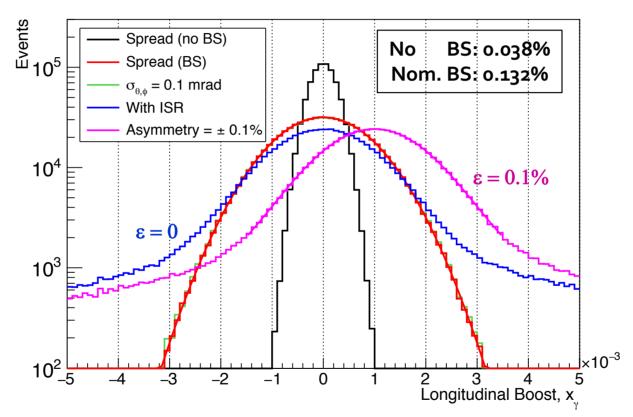
- Method 1: use the beam intensity variation between two injections
- Method 2: use the machine filling period
 - → Are these methods realistic ?
 - → Do we need to have a "per-bunch" estimate of the crossing angle ?
- Method 3: other proposals ?

- □ \sqrt{s} spread strongly affects \sqrt{s} -dependent observables
 - Must therefore be measured with adequate precision
 - So that related uncertainty be smaller than the expected statistical precision

- If not attended, the centre-of-mass energy spread:
 - Increases Γ_z , reduces σ^0 , increases A_{FB}(87.9 GeV), decreases A_{FB}(94.3 GeV)

□ Solve (E,p) conservation for $x_{\gamma} = p_z^{\gamma} / \sqrt{s}$ with $\mu^+\mu^-(\gamma)$ events

$$\begin{split} E^+ \sin \theta^+ \cos \varphi^+ + E^- \sin \theta^- \cos \varphi^- + |p_z^{\gamma}| \tan \alpha/2 &= \sqrt{s} \tan \alpha/2, \\ E^+ \sin \theta^+ \sin \varphi^+ + E^- \sin \theta^- \sin \varphi^- &= 0, \\ E^+ \cos \theta^+ &+ E^- \cos \theta^- &+ p_z^{\gamma} &= \sqrt{s} \varepsilon, \\ E^+ &+ E^- &+ |p_z^{\gamma}| / \cos \alpha/2 &= \sqrt{s} / \cos \alpha/2, \end{split}$$


• In <u>arXiv:1909.12245</u>, the solution is proposed with no longitudinal boost ($\varepsilon = 0$)

$$x_{\gamma} = -\frac{x_{+}\cos\theta^{+} + x_{-}\cos\theta^{-}}{\cos(\alpha/2) + |x_{+}\cos\theta^{+} + x_{-}\cos\theta^{-}|}$$

With
$$x_{\pm} = \frac{\mp \sin \theta^{\mp} \sin \varphi^{\mp}}{\sin \theta^{+} \sin \varphi^{+} - \sin \theta^{-} \sin \varphi^{-}}$$

See PJ's talk on Wednesday 21/09

Resulting distributions of x_{\gamma}, for 10⁶ dimuon events (every 5 minutes at the Z pole)

One million dimuon events

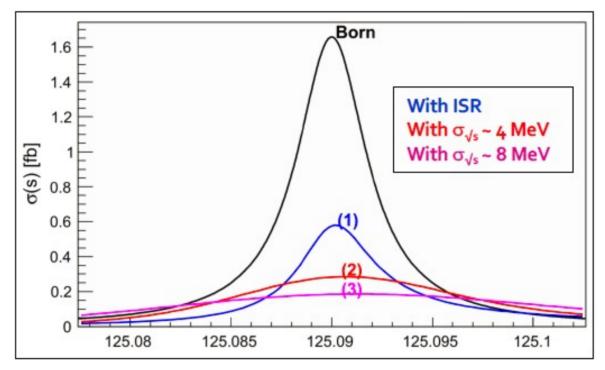
- The distribution of x_{γ} contains ISR + \sqrt{s} spread + muon angular resolution
 - Exercise: solve the equations with $\varepsilon \neq 0$

Extract from the conclusions of <u>arXiv:1909.12245</u>

				1					To be	e revised
Pseudo Observable	$\Gamma_{\rm Z}$			$\alpha_{ m QED}$	$(m_{\rm Z}^2)$	$-\Gamma_{\rm W}$	T_{top}	L		
Acceptable error	$35 \mathrm{keV}$			10^{-5}		$0.5\mathrm{MeV}$	$18\mathrm{MeV}$			
$\sqrt{s} \; (\text{GeV})$	87.9	91.2	93.8	87.9	93.8	161	350			
$\sigma(\delta E)/\delta E$	0.8% $0.2%$ $0.8%$		0.7%		11%	35%				
$N_{\rm e^+e^- \rightarrow \mu^+\mu^-}$	510^4	810^{5}	510^4	6.510^4		260	25			
L $(10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1})$	230					28	1.8			
$\sigma_{\mu\mu} ~({ m pb})$	185	1450	460	185	460	4.0	0.8			
Dimuon rate (Hz)	425	3325	1050	425	1050	1.1	0.015			
Time needed	$2 \min$	$4 \min$	$< 1 \min$	$3 \min$	$1 \min$	$4 \min$	$30 \min$			

- See also presentation from André Sailer on Wednesday
 - Another method with Bhabha events proposed in the linear collider context

√s spread: Possible projects


- All reported numbers obtained with
 - A home-made event generator, including home-made ISR generation (no FSR)
 - Gaussian smearing of muon momenta and angles
 - Standalone analysis code
- Reproduce/check all conclusions, at all centre-of-mass energies, with
 - A professional generator (e.g., KKMC) which contains ISR, FSR, IFI
 - Fast and full simulation, and FCCAnalysis code
 - All lepton species
 - At least e and μ , τ might be more difficult due to degraded angular resolution (to be checked)
- The proposed method does not disentangle ISR, \sqrt{s} spread, angular resolution
 - Question: Is it needed?
 - If it is, what is the required precision on ISR prediction?
 - Implement ways to measure muon angular resolution from the data

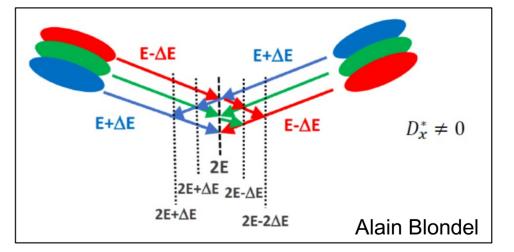
√s spread: Possible projects

- **Implement Andre's method, and apply it to FCC-ee**
- The precision of the method depend on the precise, <u>absolute</u>, angle determination
 - Here, "absolute" means relative to the beams
 - As opposed to relative to the tracker axis or the magnetic field direction
 - A method has been proposed in <u>arXiv:1909.12245</u>
 - It will be presented on Wednesday (PJ)
 - Would need to implement the method with realistic simulation/reconstruction
 - And maybe find other methods
 - Can the method be applied to determined the detector acceptance with precision?
- Projects common to all measurements
 - Extract requirements on the detector performance to reach the required precision
 - Absolute alignment, absolute momentum calibration
 - Momentum resolution, angular resolution

\sqrt{s} monochromatization

• Monochromatization essential for s-channel Higgs direct production ($\Gamma_{\rm H}$ ~ 4 MeV)

- Run at $\sqrt{s} = mH within what tolerance ?$
- Measure continuously \sqrt{s} with a great precision what precision is needed ?
- Measure the \sqrt{s} spread with a great precision what precision is needed ?


\sqrt{s} monochromatization

Monochromatization

Chromatization

- Apply previous techniques to monochromatization monitoring
 - With crossing angle
 - Boost remains constant with x position
 - Monitor the correlations
 - → Between the boost and the IP position & time
 - Everything is to be done here
 - Including the understanding of this drawing 😊

A lot of work ahead !

- But also a lot of fun (speaking from experience)
 - And a possibility for many single-author publications

- IMPORTANT ! A tutorial is foreseen on Thursday afternoon (Marcin)
 - Learn how to generate, simulate, analyse dimuon events and more in FCCSW
 - Come with your computer !
 - And apply what you have learnt to determine \sqrt{s} , spread, boost, angles, axes, etc.