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Zhe Duan: Overall progress in CEPC polarization studies

» Study of the radiative depolarization effects in CEPC collider rings [1] (this talk)
— Spin tracking simulations for CEPC CDR lattice
— Comparison between simulations with theories

* Longitudinally polarized colliding beams (Tao Chen’s talk)

— Polarization maintenance via the “spin resonance free” feature of the CEPC
booster lattice [2,3]

— Spin rotator design at CEPC-Z energy [4]
* Resonant depolarization (Sep 29 WP1 talk)

— The option to prepare polarized e+/e- bunches from the injector
 Compton polarimeter via scattered electron distribution [5]

[1] W. H. Xia, Z. Duan, Y. W. Wang, B. Wang, J. Gao, arXiv:2204.12718v1 [physics.acc-ph]
[2] V. Ranjbar, et al., PRAB 21, 111003 (2018). [3] Z. Duan, presentation at eeFACT 2022.
[4] W. Xia et al., RDTM (2022) doi: 10.1007/s41605-022-00344-2

[5] S. H. Chen et al., JINST 17, PO8005, (2022)



Zhe Duan:
Correlated and uncorrelated regime of spin resonance crossing

* Follow the “dynamical picture” [1] that the instantaneous spin precession rate v, is dependent on
the instantaneous energy deviation 6, underlying spin resonances could be crossed as a result of

synchrotron oscillations
» The following two regimes of spin resonance crossing were also proposed in [1]
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[1] Derbenev, Kondrantenko and Skrinsky, Part. Accel. 9, 247 (1979)



Zhe Duan:
Case study: dependence on beam energy

TABLE IV. The CEPC lattice parameters. (* indicates the planned operation energies in the CEPC CDR.)
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Zhe Duan:
Summary

* We compared Monte-Carlo simulation of the radiative depolarization versus the two distinct
theories that describe the influence of synchrotron oscillations & radiations at ultra-high beam

energies.

* The comparison suggests a gradual evolution from the correlated regime to the uncorrelated
regime, not clear at the moment. Work urgent is needed to clarify the theory. For example using

the Bloch equation[1,2,3], that could merges into these theories at extremes.

* Generation of this study to more comprehensive lattice modeling and more error seeds is
foreseen, for better understanding the radiative depolarization mechanisms and establishing

correction methods to achieve a high beam polarization @ CEPC.

[1] Heinemann, et al., UMP A 34, 1942032, (2019). [2] Bosnosov Ph. D Thesis, University of New Mexico (2020). [3] Heinemann, et al., IMP A 34,
2041003 (2020).



Tao Chen: Longitudinal polarization @ CEPC

* In the injector: preparation and maintenance of highly polarized e- (e+) beam(s).

* Polarized source: polarized e- gun (specs defined), polarized e+ source (preliminary study)

e Booster: polarization maintenance (underway)

* Transfer lines: ensure the matching of polarization directions (to be studied)

* |In the collider ring:
* spin rotators - > longitudinal polarization[1] (don
* ensure Tpg > Tp, then Pyyg = Pip;

* Compton polarimeter[2] (under way)

[1] W. H. Xia et al., RDTM (2022) doi: 10.1007/s41605-022-00344-2
[2] S. H. Chen et al., JINST 17, PO8005, (2022)
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Tao Chen: Simulation of polarization transmission to 45.6 GeV
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Tao Chen: Simulation of polarization transmission to 120 GeV

Evolution of vertical rms emittance

100 ¢

0.01

0.99

0.98

0.97

0.96 -

0.95 -

0.94 -

0.93

On the closed orbit

!
Imperfect lattice !
Imperfection resonances%

w/o

gquantum excitation

<Sy>

Intrinsic resonance strength scaled with emittance

0.016 \

0.014 - N
0.012 - i
0.01 - i
0.008 - B

0.006 - *

Scaled Strength

0.004 -

0.002 -

0 IR NN 0 AT R KT RN N AR \M\‘\HMIMImmmm,
50 100 150 200 250

aGamma

5000 particles, initial vertical emittance 40nm
1 T T

0.9 ! -

3
3
&

0.8 |- E i

o7 Imperfect lattice  : -
os - Both resonance sources 1

s . W/ quantum excitatién\_\

0.4 \ \ \ \
0 1 2 3 4 5

Final polarization

Epsilon

0.0035

0.003

0.0025

0.002

0.0015

0.001

0.0005

Imperfection resonance strength

50 100 150 200 250

aGamma

1.0}

..
0.9+
0.8t . . . . 1
The equilibrium vertical emittan
0.7} needs to be corrected to below]
06! to achieve 90% polarization
transmission
0.5+ o
[I]' 1ID EIO 3I[]' 4IO
€,(pm)

300

ce
4 pm,



Tao Chen: Short summary on polarization maintenance in booster

Findings:
* A large ramping rate of spin precession frequency a, due to the large circumference

* Spin resonances are generally weak, due to the high periodicity & cancellation

e Depolarization is negligible, in the fast crossing regime \/% « 0.1, up to 45.6 GeV

* The strong intrinsic resonance at ~ 87 GeV leads to large depolarization, and hurts the
polarization transmission up to 120 GeV, potential mitigations:

* A new lattice with the first strong intrinsic resonance larger than 120 GeV
e The above study used the lattice of CDR, In the new design of TDR the condition is satisfied.

* Control the vertical equilibrium beam emittance to below ~ 4 pm (coupling ~ 0.1% )

* Further research is needed on the tolerance of the highly efficient polarization transmission to
the corrected closed-orbit amplitude

10
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Koop: option-2: Fast acceleration in a booster ring
39-45 GeV, Q s=0.02, o 8=0.0004, w=0.02, dv/dN=0.056

1 Spin|perturbation wy, due to vertical orbit distortions|:
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As one can see, the presented here simulation shows very strong depolarization in the FCC-ee

booster synchrotron during acceleration with the nominal ramp rate: 25 GeV/ 0.32 s.
Besides, we can expect up to 3 times stronger harmonics due to statistical fluctuations.



Koop: option 3: Adiabatic crossing of integers near Z

45.6 GeV, Q 5=0.02, o 5=0.0004, w=0.2, dv/dN=0.056
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Spin tune: v

Beam polarization is well preserved with the use of single Partial Snake for the acceleration in
the FCC-ee booster ring. Polarization loss is only 3%, energy ramp rate 25 GeV/0.32 s.

Can use static solenoid with field integral BL=200 T-m. Then, at 20 GeV we will have w=0.5 (full
snake!) and w=0.22 at 45.6 GeV. Quads of spin-rotator will ramp to keep Q, = const.

Koop-ldeas for Longitudinal Polarization, eeFACT2018, HKUST,
Hongkong

13



Koop:
| schould check — how closed orbit distortion amplitudes used in
my simulations in a toy ring are relevant to a real situation in the

fast ramping booster synchrotron...

That strongly affects the parameters of a needed partial snake
for adiabatic crossing of integer resonances.

And, probably, fast crossing can work without any problems?
That is a simplest solution! EIC and CEPC rely on such approach!

Koop-ldeas for Longitudinal Polarization, eeFACT2018, HKUST, 14
Hongkong



Spin Polarization Simulations for the Future Circular
Collider e+e- using BMAD
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Benchmark between Tao (BMAD) and SITF cPrL

@ SITF, the linear spin simulation module in SITROS

@ Underlying differences between two codes exist — check step by step
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Figure: Energy scan using sequence version 213 seed 13 in SITF (left) and Tao (right)



FCCee Polarization simulations with

SITROS

Content:

- Introduction

- Polarization wigglers

- Simulations at 45 and 80 GeV

- The importance of damping in the 8x8 matrix

- Summary

Eliana GIANFELICE (Fermilab)
EPOL2022, September 22, 2022



Eliana’s Summar
y

Due to the demanding IR optics design and the machine size, establishing a closed orbit

and keeping a stable machine look challenging.
e Beam polarization is obtained “for free” through Sokolov-Ternov effect.
— At 45 GeV wigglers are required to get 799, =~ 2-3 h.
They do not harm polarization.
e P__ depends on how well is the machine aligned /corrected, requirements becoming
stricter at high energy.

— Extremely well corrected orbit/optics is required for a large chromatic machine

with ﬁ;:(J.B - 1 mm as FCC-ee to work and meet required performance.

x T his benefits also polarization.

e The puzzling small P,, in particular at 80 GeV, has been likely understood.
Thanks!



Spin Studies with BMAD for a
SuperKEKB Polarization Upgrade
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e Sextupole pairs locates at the Rotator tuning area are turned off because
the phase difference between these identical pairs is no longer r (the
condition to cancel out the non-linear effects)

e Adjust sextuples in 4 arc section (45 pairs) shown in the picture above to
match the original Chromaticity of Victorts

B D
Ring Parameters Comparison after performing the
closed-geometry optimization 29

Machine Parameter

Original Ring

Rot Installed

Tune Q.
Tune @,
Chromaticity &,

45.530994
43.580709
1.593508

45.530994
43.580709
1.593508

Chromaticity &, 1.622865 1.622865
Damping partition .J, 1.000064 0.984216
Damping partition .J,, 1.000002 1.005266

Emittance £, (m)
Emittance £, (m)

4.44061 x 10~
5.65367 x 10713

4.89628 x 10~
3.96631 x 10712

Tune and Chromaticity are matched to the original




Conclusion

Acceleration of polarized beams (both — e+ and e-) in a booster — most
challenging and most attractive solution. Shall study seriously!

Simulation codes are developing, but need to be faster and become more
friendly for users, as MADx and other accelerator codes.



