Achievements and open questions WP1

Speakers:

Eliana Gianfelice, Ivan Koop (BINP), Dr Tatiana Pieloni (EPF Lausanne)

Ivan Koop

EPOL-2022, September 23, 2022

WP1: 3162/1-K01

Convener: Eliana Gianfelice

Zhe Duan: Overall progress in CEPC polarization studies

- Study of the radiative depolarization effects in CEPC collider rings [1] (this talk)
 - Spin tracking simulations for CEPC CDR lattice
 - Comparison between simulations with theories
- Longitudinally polarized colliding beams (Tao Chen's talk)
 - Polarization maintenance via the "spin resonance free" feature of the CEPC booster lattice [2,3]
 - Spin rotator design at CEPC-Z energy [4]
- Resonant depolarization (Sep 29 WP1 talk)
 - The option to prepare polarized e+/e- bunches from the injector
- Compton polarimeter via scattered electron distribution [5]

[1] W. H. Xia, Z. Duan, Y. W. Wang, B. Wang, J. Gao, arXiv:2204.12718v1 [physics.acc-ph]
[2] V. Ranjbar, et al., PRAB 21, 111003 (2018). [3] Z. Duan, presentation at eeFACT 2022.
[4] W. Xia et al., RDTM (2022) doi: 10.1007/s41605-022-00344-2
[5] S. H. Chen et al., JINST 17, P08005, (2022)

Zhe Duan: Correlated and uncorrelated regime of spin resonance crossing

- Follow the "dynamical picture" [1] that the instantaneous spin precession rate v_s is dependent on the instantaneous energy deviation δ, underlying spin resonances could be crossed as a result of synchrotron oscillations
- The following two regimes of spin resonance crossing were also proposed in [1]
 - Correlated regime: $\kappa = rac{
 u_0^2 \lambda_p}{
 u_z^3} \ll 1$
 - Non-resonant spin diffusion & perturbative treatment of $\frac{\partial \hat{n}}{\partial \delta}$ applies

$$\begin{aligned} \frac{\tau_p}{\tau_d} &\approx \frac{11}{18} \sum_{k=n-l}^{n+l} \sum_{m=-\infty}^{\infty} \left(\frac{\nu_0^2 |\tilde{\omega}_k|^2 e^{-\sigma^2} I_m(\sigma^2)}{\left[(\nu_0 - k - m\nu_z)^2 - \nu_z^2 \right]^2} \right. \\ &+ \left. \frac{(\nu_0 - k)^2 |\tilde{\lambda}_k|^2 e^{-\sigma^2} I_m(\sigma^2)}{\left[(\nu_0 - k - m\nu_z)^2 - \nu_z^2 \right]^2} \right) \end{aligned}$$

• Uncorrelated regime:

$$\kappa = rac{
u_0^2 \lambda_p}{
u_z^3} \ll 1$$
 is violated and $rac{
u_0 \sigma_\delta}{
u_z} \gg 1$

Resonant spin diffusion

[1] Derbenev, Kondrantenko and Skrinsky, Part. Accel. 9, 247 (1979)

Zhe Duan:

Case study: dependence on beam energy

• Increasing beam energy lead to larger σ_{δ} , modulation index σ and correlation index κ

Beam energy (GeV)	$a\gamma_0$	$ \tilde{\omega}_k ^2$ (×10 ⁻⁹)	$ \tilde{\lambda}_k ^2$ (×10 ⁻⁵)	$\sigma_{\delta}(\times 10^{-4})$	ν_z	τ_p (h)	κ	σ
45.6*	103.5	$ \tilde{\omega}_{103} ^2 = 2.7$ $ \tilde{\omega}_{104} ^2 = 2.8$	$ \tilde{\lambda}_{103} ^2 = 2.2645$ $ \tilde{\lambda}_{104} ^2 = 1.7166$	3.77	0.028	252.72	0.03	1.3
60.1	136.5	$ \tilde{\omega}_{136} ^2 = 3.7$ $ \tilde{\omega}_{137} ^2 = 14.7$	$ \tilde{\lambda}_{136} ^2 = 0.8178$ $ \tilde{\lambda}_{137} ^2 = 5.5717$	4.96	0.028	63.34	0.20	2.4
69.8	158.5	$ \tilde{\omega}_{158} ^2 = 6.6$ $ \tilde{\omega}_{159} ^2 = 26.4$	$ \tilde{\lambda}_{158} ^2 = 0.9574$ $ \tilde{\lambda}_{159} ^2 = 4.4585$	5.77	0.0324	30.00	0.36	2.8
80.0*	181.5	$ \tilde{\omega}_{181} ^2 = 14.4$ $ \tilde{\omega}_{182} ^2 = 53.3$	$ \tilde{\lambda}_{181} ^2 = 4.9118$ $ \tilde{\lambda}_{182} ^2 = 15.6433$	6.61	0.0395	15.24	0.52	3.0
84.4	191.5	$ \tilde{\omega}_{191} ^2 = 16.3$ $ \tilde{\omega}_{192} ^2 = 19.8$	$ \tilde{\lambda}_{191} ^2 = 15.5332$ $ \tilde{\lambda}_{192} ^2 = 1.0088$	6.97	0.0425	11.65	0.61	3.1
90.1	204.5	$ \tilde{\omega}_{204} ^2 = 19.1$ $ \tilde{\omega}_{205} ^2 = 43.8$	$ \tilde{\lambda}_{204} ^2 = 3.7786$ $ \tilde{\lambda}_{205} ^2 = 0.6403$	7.43	0.0467	8.39	0.72	3.2
95.4	216.5	$ \tilde{\omega}_{216} ^2 = 15.0$ $ \tilde{\omega}_{217} ^2 = 34.8$	$ \tilde{\lambda}_{216} ^2 = 6.1547$ $ \tilde{\lambda}_{217} ^2 = 1.2292$	7.88	0.0515	6.31	0.80	3.3
99.8	226.5	$ \tilde{\omega}_{226} ^2 = 10.5$ $ \tilde{\omega}_{227} ^2 = 27.4$	$ \tilde{\lambda}_{226} ^2 = 35.2604$ $ \tilde{\lambda}_{227} ^2 = 4.9787$	8.24	0.0550	5.03	0.90	3.3
109.9	249.5	$ \tilde{\omega}_{249} ^2 = 56.9$ $ \tilde{\omega}_{250} ^2 = 41.3$	$ \tilde{\lambda}_{249} ^2 = 26.9851$ $ \tilde{\lambda}_{250} ^2 = 46.9963$	9.08	0.0585	3.10	1.48	3.8
120.1*	272.5	$ \tilde{\omega}_{271} ^2 = 770.4$ $ \tilde{\omega}_{272} ^2 = 95.8$	$ \tilde{\lambda}_{271} ^2 = 41.6290$ $ \tilde{\lambda}_{272} ^2 = 12.0825$	9.90	0.0650	2.03	1.95	4.1

Zhe Duan:

Summary

- We compared Monte-Carlo simulation of the radiative depolarization versus the two distinct theories that describe the influence of synchrotron oscillations & radiations at ultra-high beam energies.
- The comparison suggests a gradual evolution from the correlated regime to the uncorrelated regime, not clear at the moment. Work urgent is needed to clarify the theory. For example using the Bloch equation[1,2,3], that could merges into these theories at extremes.
- Generation of this study to more comprehensive lattice modeling and more error seeds is foreseen, for better understanding the radiative depolarization mechanisms and establishing correction methods to achieve a high beam polarization @ CEPC.

Tao Chen: Longitudinal polarization @ CEPC

- In the injector: preparation and maintenance of highly polarized e- (e+) beam(s).
 - Polarized source: polarized e- gun (specs defined), polarized e+ source (preliminary study)
 - Booster: polarization maintenance (underway)
 - Transfer lines: ensure the matching of polarization directions (to be studied)
- In the collider ring:
 - spin rotators > longitudinal polarization[1] (don
 - ensure $\tau_{DK} \gg \tau_b$, then $P_{avg} \approx P_{inj}$
 - Compton polarimeter[2] (under way)

[1] W. H. Xia et al., RDTM (2022) doi: 10.1007/s41605-022-00344-2
[2] S. H. Chen et al., JINST 17, P08005, (2022)

Tao Chen: Simulation of polarization transmission to 45.6 GeV

Tao Chen: Simulation of polarization transmission to 120 GeV

Tao Chen: Short summary on polarization maintenance in booster

Findings:

- A large ramping rate of spin precession frequency α , due to the large circumference
- Spin resonances are generally weak, due to the high periodicity & cancellation
- Depolarization is negligible, in the fast crossing regime $\frac{\epsilon}{\sqrt{\alpha}} \ll 0.1$, up to 45.6 GeV
- The strong intrinsic resonance at ~ 87 GeV leads to large depolarization, and hurts the polarization transmission up to 120 GeV, potential mitigations:
 - A new lattice with the first strong intrinsic resonance larger than 120 GeV
 - The above study used the lattice of CDR, In the new design of TDR the condition is satisfied.
 - Control the vertical equilibrium beam emittance to below ~ 4 pm (coupling ~ 0.1%)
- Further research is needed on the tolerance of the highly efficient polarization transmission to the corrected closed-orbit amplitude

Ideas for longitudinal polarization at the Z/W/H/top factory

I.Koop Budker Institute of Nuclear Physics, Novosibirsk State University, Novosibirsk State Technical University, 630090, Novosibirsk, Russia

62nd ICFA Advanced Beam Dynamics Workshop on High Luminosity Circular e⁺e⁻ Colliders (eeFACT2018)

HKUST, Hongkong, 24-27 September, 2018

Koop: option-2: Fast acceleration in a booster ring

39-45 GeV, Q_s=0.02, $\sigma_{\delta}=0.0004$, w=0.02, $d\nu/dN=0.056$

Spin tune: ν

As one can see, the presented here simulation shows very strong depolarization in the FCC-ee booster synchrotron during acceleration with the nominal ramp rate: 25 GeV/ 0.32 s. Besides, we can expect up to 3 times stronger harmonics due to statistical fluctuations.

Koop-Ideas for Longitudinal Polarization, eeFACT2018, HKUST,

Hongkong

Koop: option 3: Adiabatic crossing of integers near Z

45.6 GeV, Q_s=0.02, $\sigma_{\delta}=0.0004$, w=0.2, $d\nu/dN=0.056$

Spin tune: ν

Beam polarization is well preserved with the use of single Partial Snake for the acceleration in the FCC-ee booster ring. Polarization loss is only 3%, energy ramp rate 25 GeV/0.32 s. Can use static solenoid with field integral BL=200 T·m. Then, at 20 GeV we will have w=0.5 (full snake!) and w=0.22 at 45.6 GeV. Quads of spin-rotator will ramp to keep $Q_{x,y} = const$.

Koop:

I schould check – how closed orbit distortion amplitudes used in my simulations in a toy ring are relevant to a real situation in the fast ramping booster synchrotron...

That strongly affects the parameters of a needed partial snake for adiabatic crossing of integer resonances.

And, probably, fast crossing can work without any problems? That is a simplest solution! EIC and CEPC rely on such approach! Spin Polarization Simulations for the Future Circular Collider e+e- using BMAD

Yi Wu¹, Félix Carlier², Tatiana Pieloni¹

¹École Polytechnique Fédérale de Lausanne (EPFL) ²The European Organization for Nuclear Research (CERN)

Acknowledgments to Alain Blondel, Desmond Barber, David Sagan, Eliana Gianfelice-Wendt, Tessa Charles, Werner Herr, Léon Van Riesen-Haupt and all colleagues

Benchmark between Tao (BMAD) and SITF

- SITF, the linear spin simulation module in SITROS
- \bullet Underlying differences between two codes exist \rightarrow check step by step

Figure: Energy scan using sequence version 213 seed 13 in SITF (left) and Tao (right)

FCCee Polarization simulations with SITROS

Content:

- Introduction
- Polarization wigglers
- Simulations at 45 and 80 GeV
- The importance of damping in the 8x8 matrix
- Summary

Eliana GIANFELICE (Fermilab) EPOL2022, September 22, 2022

Eliana's **Summary**

Due to the demanding IR optics design and the machine size, establishing a closed orbit and keeping a stable machine look challenging.

- Beam polarization is obtained "for free" through Sokolov-Ternov effect.
 - At 45 GeV wigglers are required to get $\tau_{10\%} \approx$ 2-3 h. They do not harm polarization.
- P_∞ depends on how well is the machine aligned/corrected, requirements becoming stricter at high energy.
 - Extremely well corrected orbit/optics is required for a large chromatic machine with β^{*}_y=0.8 1 mm as FCC-ee to work and meet required performance.
 * This benefits also polarization.
- The puzzling small P_y , in particular at 80 GeV, has been likely understood. Thanks!

Spin Studies with BMAD for a SuperKEKB Polarization Upgrade

Yuhao Peng

2022.09.22

1

- Sextupole pairs locates at the Rotator tuning area are turned off because the phase difference between these identical pairs is no longer π (the condition to cancel out the non-linear effects)
- Adjust sextuples in 4 arc section (45 pairs) shown in the picture above to match the original Chromaticity

Ring Parameters Comparison after performing the closed-geometry optimization

29

Machine Parameter	Original Ring	Rot Installed
Tune Q_x	45.530994	45.530994
Tune Q_y	43.580709	43.580709
Chromaticity ξ_x	1.593508	1.593508
Chromaticity ξ_y	1.622865	1.622865
Damping partition J_x	1.000064	0.984216
Damping partition J_y	1.000002	1.005266
Emittance ε_x (m)	4.44061×10^{-9}	4.89628×10^{-9}
Emittance ε_y (m)	5.65367×10^{-13}	3.96631×10^{-12}

Tune and Chromaticity are matched to the original

......

Conclusion

Acceleration of polarized beams (both – e+ and e-) in a booster – most challenging and most attractive solution. Shall study seriously!

Simulation codes are developing, but need to be faster and become more friendly for users, as MADx and other accelerator codes.