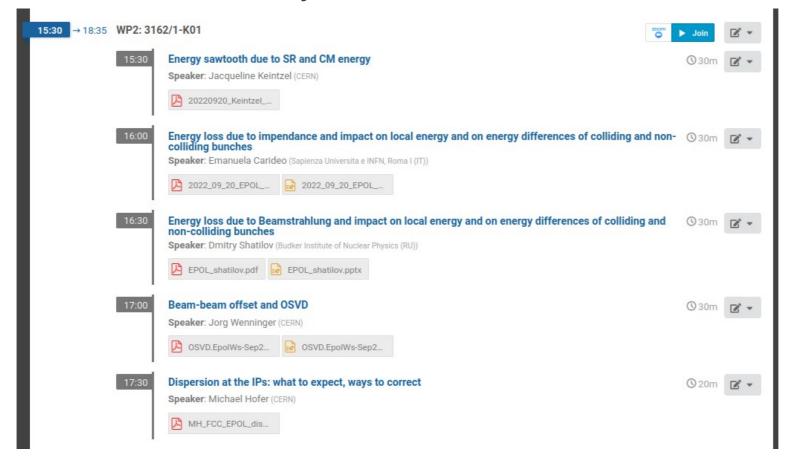


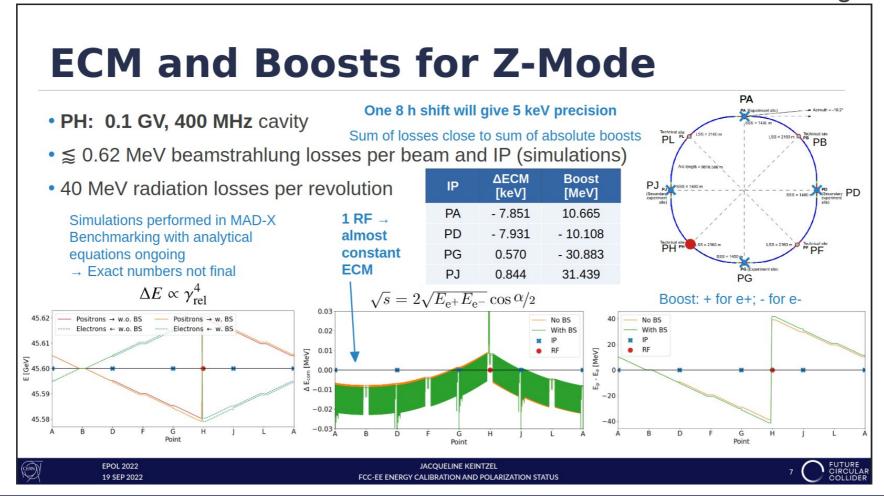
Summary WP2

J. Keintzel, K. Oide, J. Wenninger For the WP2

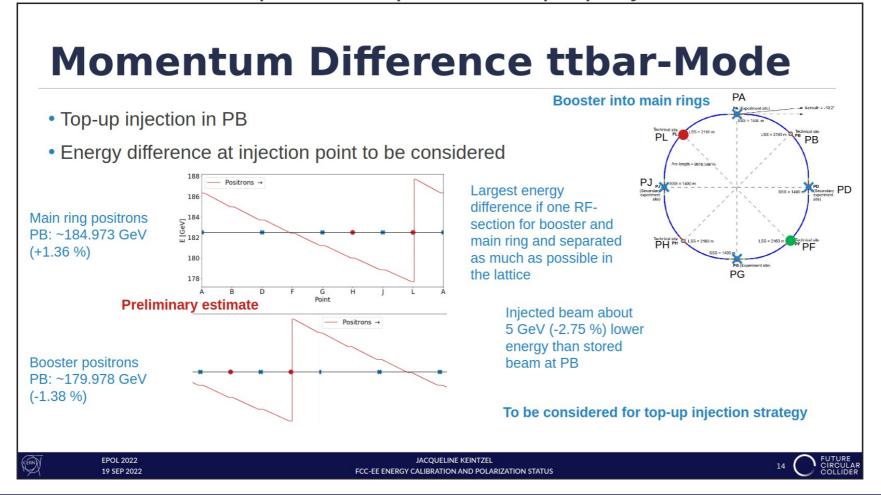
2d FCC Polarization Workshop (EPOL) 2022


Joint EIC-FCC Working Meeting on e+/e- Polarization 23th September 2022

FCCIS – The Future Circular Collider Innovation Study. This INFRADEV Research and Innovation Action project receives funding from the European Union's H2020 Framework Programme under grant agreement no. 951754.


Timetable

One parallel session on Tuesday afternoon

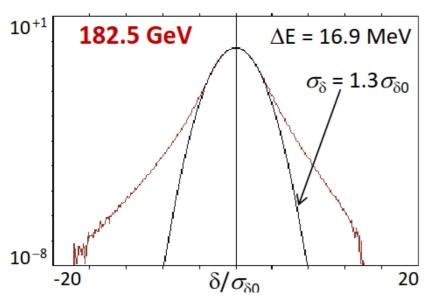

Center-of-Mass Energy at Z-pole

Almost constant ECM with one RF at all 4 IPs, even with beamstrahlung

Energy Losses at ttbar

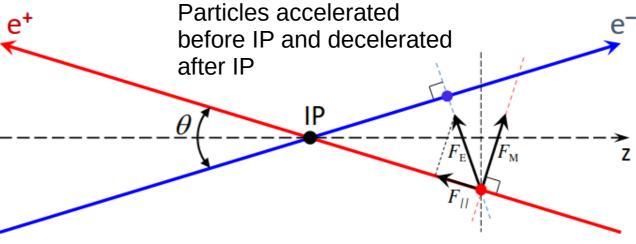
• Sufficient momentum aperture required for top-up injection

Impact on top-up injection to be studied


Center-of-Mass Energy

- Longitudinal impedance, mainly resistive wall and bellows, leads to constant energy loss at the Z-pole
- Longitudinal wakefields at ttbar almost negligible

	Pilot bunch (3 × 10 ¹⁰ ppb)	Nominal intensity (2.6 × 10 ¹¹ ppb)	Nominal intensity and beamstrahlung $(2.6 \times 10^{11} \text{ ppb})$	SR
Energy spread	0.039 %	0.045 %	0.143 %	0.039 %
Energy loss	0.8 MeV	4.2 MeV	~ 1.6 MeV	39 MeV
Bunch length	5 mm	8.3 mm	17.2 mm	4.4 mm


Beamstrahlung and Crossing Angle

- Beamstrahlung leads to an increased energy spread for colliding bunches
- Beam energy and crossing angle changes during collision, however not ECM

E (GeV)	45.6	80	120	182.5
δE (keV)	61	108	212	1480

Without beamstrahlung – the same values!

Bunch intensities must be within +/- 5% of nominal one

If the bunch populations deviate from the nominal value by $\pm 5\%$, then σ_{δ} , σ_{z} and ΔE differ about twice, and the centers of bunches no longer meet at the IP. As a result, the weak (less populated) bunch decelerates and the strong one accelerates by ~ 1 keV, which contributes to ΔE .

Opposite Sign Vertical Dispersion

• To minimize ΔECM: minimize dispersion at IP and beam offset

Opposite sign dispersion and CM energy

While the impact of dispersion on the CM energy spread depends on

- o the **dispersion** at the IP (D_{iji}),
- o the beam energy spread ($\sigma_c = \sigma_E/E_0$),
- o the **betatronic beam size** at the IP (σ_{ij}) ,

... the CM energy shift depends also on

o the **separation of the two beams** (total separation = $2u_0$).

$$\Delta E_{CM} = -2u_0rac{\sigma_E^2(D_{u1}-D_{u2})}{E_0(\sigma_{B1}^2+\sigma_{B2}^2)}$$

$$\sigma_{E_{CM}}^2 = \sigma_E^2 \left[rac{\sigma_\epsilon^2 (D_{u1} + D_{u2})^2 + 4\sigma_u^2}{\sigma_{B1}^2 + \sigma_{B2}^2}
ight] \qquad \qquad \sigma_{Bi}^2 = \sigma_u^2 + (D_{ui}\sigma_\epsilon)^2$$

$$D_{u1} = D_{u2}$$

$$D_{u1} = D_{u2}$$

$$\sigma_{Bi}^2 = \sigma_u^2 + (D_{ui}\sigma_u^2)$$

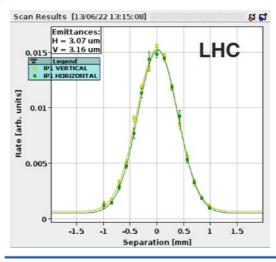
I =1.2 labels the two beams u = x.v labels the planes

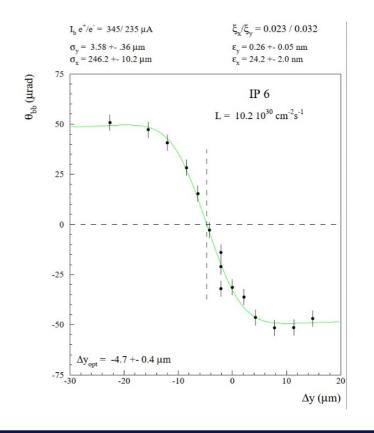
Total beam size

for head-on collisions!

Opposite sign dispersion and collision offsets at the interaction points - J. Wenninger

Dispersion at FCC-ee


- 10 µm vertical dispersion, the ECM error is 1 MeV/nm
- Uncertainty limited below 0.1 nm to limit systematic errors < 100 keV


Orbit offset and vertical dispersion must be controlled and corrected

$$|\Delta\sqrt{s}| = 96 |u_0| [\text{keV/nm}]$$

for
$$\Delta D^* = 1 \mu m$$
, $\sigma_E/E = 0.13\%$

- Measure by
- Luminosity scans
- Beam-beam deflection

Beam-Beam Kick and Dispersion

Induced a change of the externally imposed vertical separation and thus orbit change

Realistic BB tracking simulation must be performed

Apply a separation δ of the beams at IP

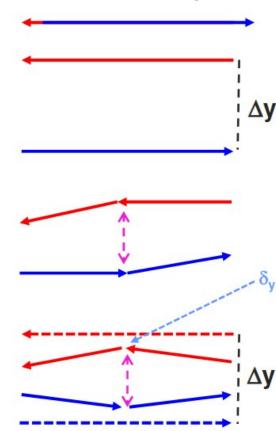
Vertical dispersion measurement spoiled by BB

oned by BB

→ cannot fully trust

dispersion from BPM readings

Beam-beam kick due to the separation δ

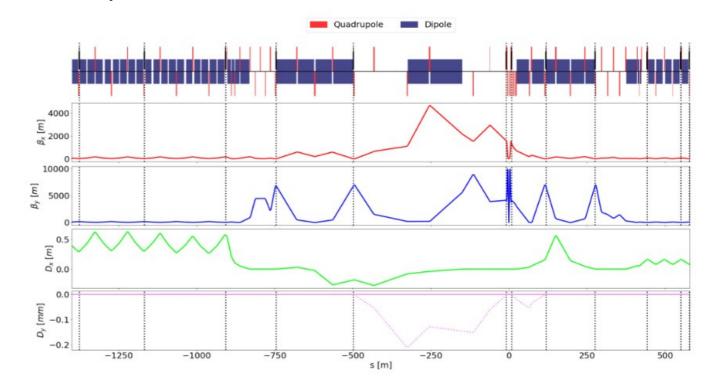


The beam-beam kick induces a **closed-orbit change** δ_y , leading to an **effective separation** that is **smaller than** Δy (for an **non-** attractive bb force and fractional Q in [0,0.5]).

Colliding and noncolliding bunches with same intensity required to disentangle BB and dispersion

$$\delta_y = \theta_{bb} \frac{\beta^*}{2 \tan \pi Q}$$

This first order estimate is only valid for $\delta << \Delta y,$ small BB kick.


Dispersion Control

- Knobs for horizontal and vertical dispersion control at IP being designed
- Aim to not perturb linear optics
- Could break phase constraint for crab-sextupoles
- Tilted solenoid creates 3 μm at IP

Knobs to be defined

Impact on chromatic optics to be evaluated

Impact on DA to be studied

Thank you!

Energy calibration and polarization indico.cern.ch/category/8678

J. Keintzel, K. Oide, J. Wenninger For the WP2

Joint EIC-FCC Working Meeting on e+/e- Polarization 23th September 2022

FCCIS – The Future Circular Collider Innovation Study. This INFRADEV Research and Innovation Action project receives funding from the European Union's H2020 Framework Programme under grant agreement no. 951754.