

Future Circular Collider Technical and Financial Feasibility Study 2d FCC Energy Calibration, Polarization and Mono-chromatisation workshop

WP2 summary

Relationship between average beam energy and centre-of-mass energies

FCC EPOL WORKSHOP

J. Keintzel, K. Oide, J. Wenninger

19-30 September 2022 at CERN remote participation possible

https://indico.cern.ch/e/EPOL2022

Presentations

Tuesday 20th September

15:30	Energy sawtooth due to SR and CM energy Speaker: Jacqueline Keintzel (CERN)							
	20220920_Keintzel							
16:00	Energy loss due to Impendance and Impact on local energy and on energy differences of colliding colliding bunches Speaker: Emanuela Carideo (Saplenza Universita e INFN, Roma I (IT))	and non-						
16:30	Energy loss due to Beamstrahlung and Impact on local energy and on energy differences of colliding and non-colliding bunches							
	Speaker: Dmitry Shatilov (Budker Institute of Nuclear Physics (RU)) Processes EPOL_shatilov.pdf EPOL_shatilov.pptx	Monday 26th September						
17:00	Beam-beam offset and OSVD Speaker: Jorg Wenninger (CERN)	Monday 20 Ocptember						
17.00	OSVD.EpolWs-Sep2	Experience of collision control using beam-beam deflection at KEKB/SuperKEKB/PEP-II						
17:30	Dispersion at the IP's: what to expect, ways to correct Speaker: Michael Hofer (CERN) MH_FCC_EPOL_dis	Speaker: Yoshihiro Funakoshi (KEK) EPOL22_Funakoshi						

Local energy vs average energy

Local energy != average beam energy:

- Synchrotron radiation losses → "classical" energy sawtooth.
- Energy loss to impedances \rightarrow impedance energy sawtooth.
- Energy loss / change due to beam interaction at IP.
- RF voltage and phase errors if more than one IP → offsets to the sawtooth in diff sections of ring.
 - Importance of single RF system at Z,
 - Can be partly "measured" with IP boosts.

Sum of local energy != centre-of-mass energy:

• IP dispersion & beam offsets

And other effects due to optics non-linearities corrections etc

Local energy – synchrotron radiation sawtooth

Can *in principle* be evaluated with high precision if the **magnetic fields** are **known accurately**:

- Dominant contribution of dipoles: requirement on field map accuracy (also edge effects), •
- Contribution of **quadrupoles**, **sextupoles**: require knowledge of beam offset in elements. •
 - "0" in ideal tapered machine.
 - Need an **estimate** of the **uncertainty** due to BPM offsets.. for machines with errors.

The absolute value of the energy loss must also be known with adequate accuracy!

In principle *just* the sum of the contributions from • individual elements.

J. Keintzel

Local energy – impedance

Overall effect less than ~10% of contribution synchrotron radiation (@ Z).

- Contribution of **distributed sources** (RW, BPMs, bellow...) ~ **undistinguishable from SR**.
- Distributed sources known, but information on narrow band impedance source missing.

Dependance on **bunch length** and **bunch charge**:

- Non-colliding witness bunches affected differently than colliding bunches.
 - Visible as orbit difference if BPM resolution is adequate (can integrate a long time).
 - Validate impedance model by circulating bunches of different charge at the same time and observing orbit differences in dispersive sections.
- Time/bunch dependence of bunch length requires accurate tracking of longitudinal beam parameters.

@Z	Pilot bunch (3 × 10 ¹⁰ ppb)	Nominal intensity (2.6×10 ¹¹ ppb)	Nominal intensity and <u>beamstrahlung</u> (2.6 × 10 ¹¹ ppb)	SR
Energy spread	0.039 %	0.045 %	0.143 %	0.039 %
Energy loss	0.8 MeV	4.2 MeV	~ 1.6 MeV	39 MeV
Bunch length	5 mm	8.3 mm	17.2 mm	4.4 mm

Constraining distributed energy losses

Boosts at the IPs – measurable with muon pairs provides 4 constraints on e+/e- difference.

Synchrotron tune: constraint on total energy loss + effective RF voltage.

High resolution orbit difference measurements:

- Bunches with different charges \rightarrow impedance losses.
- Tapering on and off differences to observe the energy loss sawtooth ?
 - May not be trivial to switch on the fly with circulating beam.

Dispersion at IP

CM energy shift due to combination of beam offsets and dispersion @ IP.

Latest set of simulations of machines with errors & corrections reach now **smaller residual D**_v:

- From rms $D_v \sim 10 \ \mu m$ to rms $\sim 1 \ \mu m \rightarrow$ good news ! •
- Impact of solenoid (X \rightarrow Y) on D_v to be considered. •

Knobs to correct dispersion at IP – work started.

No beam offset (at least on average)

M. Hofer, T. Charles

Offset control

Bias-free control of IP offset at $<(<) 0.1\sigma$ very challenging. Various optimization techniques with luminosity or BB kicks.

 Realistic simulation of dynamic effects during a scan @ FCCee required to progress.

(super-)KEKB IP feedbacks based on BB kick successful in controlling beam offsets and optimizing integrated luminosity.

pre-set reference from BB scan: not accurate enough for FCCee needs?

• We have not yet found a method to stabilize the target value.

LEP

Vertical (scan vertical offset at IP)

Y. Funakoshi

Interaction point effects

CM energy shift due to **acceleration of incoming beam** (compensated by deceleration of outgoing beam).

- Shift is function of the charges of the colliding bunch pairs \rightarrow spread.
- Evaluate the uncertainty on this shift.
 - Knowledge of absolute crossing angle value etc

$$\delta E = \langle E \rangle - E_0 \qquad \langle E \rangle = \frac{\sum E_c L_c}{\sum L_c}$$

E (GeV)	45.6	80	120	182.5
δE (keV)	61	108	212	1480

D. Shatilov

There is still a lot of work to come – no time to rest ! Work on the errors, work on corrections (Dy...), work on "procedures" (beam overlap, Dy @ IP)...

Thank you to all speakers and participants !

