WP3 conclusion

Dave Gaskell (Jlab) Thibaut Lefevre (CERN) Aurélien MARTENS (IJCLab Orsay)

Introduction: Physics requirements

- transverse polarimeter for RDP of pilots:
 - ~1000 scattered particles/crossing (precision~0.5%/s)
- Longitudinal polarimeter (rate counting) for precession of pilots:
 - ~1000 scattered particles/crossing (precision~0.5%/s)
- transverse polarimeter for colliding bunches
 - Accuracy ~<1e-3 for (~vanishing) transverse polarisation
 (→~<1e-5 longitudinal for physics at IP)
- Ability to measure beam energy
 - from the scattered electron transverse distribution

Laser system

- Mostly an operational matter
- Versatile modern technology (Yb modelock laser)
- Use same laser oscillator (synced on RF) for all scenarii (but different amplifiers operated in parallel)
- Laser parameter table to be updated for the various foreseen locations and operational scenarii
- Control of laser polarisation and measuring it precisely are essential
 - Typically 10-3 achieved (SLC, HERA LPOL, JLAB). Achieving 10-5 accuracy on polarisation measurement is not impossible but required R&D and very careful design (QWP or photo-elastic modulator) and material choice.

Some possible laser systems

	Nikolai's baseline		NB: e-beam size now about 50 Laser-beam size ~1mm		
Laser param.	1 pilot	1 pilot v2		All colliding bunches (at Z)	
Repetition rate	3 kHz	3 kHz		50 MHz	
Pulse energy	1 mJ	1 mJ		100 nJ	
Pulse duration	5 ns	5 ps ^(**)		5 ps ^(**)	
Average power	3 W	3 W ^(***)		5 W ^(***)	
Scattering rate	1x10 ⁵ /s ^(*)	2x10 ⁵ /s (****	⁻)	6x10 ⁶ /s ^(****)	
Scattering rate per bunch	1x10 ⁵ /s ^(*)	2x10 ⁵ /s		4x10 ² /s	
		1			1

Same oscillator may be used but two different amplification schemes Scheme for colliding can be adapted to a burst mode operation (166 successive bunches with 100 times more laser energy/bunch)

^(*) Large piwinski contribution, nearly scales as crossing angle, very dependent on laser beam size (was $2x10^6$ /s in ref. paper) ^(**) Short pulse duration \rightarrow broader laser spectrum, energy measurement from threshold more difficult ^(***) Can be increased to typically ~100W (nowadays) but requires operational validation, management of thermal effects... ^(****) not limited by Piwinski contribution \rightarrow significantly increases when decreasing laser beam size

Some possible laser systems

	Nikolai	's baseline	NB: e-beam size now about 5 Laser-beam size ~1mm					
Laser param.	1 pilot	1 pilot v2	All colliding bunches (at Z)					
Repetition rate	3 kHz	3 kHz	50 MHz					
Pulse energy	A factor 10	 A factor 10 too small wrt to specs of slide 2. → Reduce laser beam size → Amplitude of transverse excursions of beam ? 						
Pulse duration	→ Reduce							
Average power	3 W	3 10-	5 W 1 /					
Scattering rate	1x10 ⁵ /s ^(*)	2x10 ⁵ /s (***	^{*)} 6x10 ⁶ /s ^(****)					
Scattering rate per bunch	1x10 ⁵ /s ^(*)	2x10 ⁵ /s	4x10 ² /s					

Same oscillator may be used but two different amplification schemes Scheme for colliding can be adapted to a burst mode operation (166 successive bunches with 100 times more laser energy/bunch)

^(*) Large piwinski contribution, nearly scales as crossing angle, very dependent on laser beam size (was $2x10^6$ /s in ref. paper) ^(**) Short pulse duration \rightarrow broader laser spectrum, energy measurement from threshold more difficult ^(***) Can be increased to typically ~100W (nowadays) but requires operational validation, management of thermal effects... ^(****) not limited by Piwinski contribution \rightarrow significantly increases when decreasing laser beam size

Detectors

- Simulations must be pursued to investigate on ideal/perfect detector what is acceptable pixel size
- Check concept is OK for the various operational scenarii and statistical precision is met
- Iterate with reasonable integration assumptions
- Background $\leftarrow \rightarrow$ integration ?
- Decide on detector and realize detailed simulations to include resolution effects
 - ~<0.3mm spatial resolution needed
- Software development profit from EIC work?

Integration

- Laser would need a dedicated laser room close to interaction chamber , laser beam transport → followup with integration
 - EIC will test high power optical fiber transmission
- Interaction chamber studied for SuperKEKb (2/4 degrees angle) apparently not an issue for impedance.
 - EIC team will actually perform impedance studies soon.
- Current concept ~2mrad precisely known spectrometer magnet, 100m drift behind
 - Who could provide design ?
- Two locations upstream IP or RF proposed (M. Hofer)
 - Upstream IP difficult \rightarrow less space, upstream RF looks better

Next steps

- Draft of functional specs to be circulated
- simulations for various scenarii, locations and operating energies (Z, WW)
- Integration concept (room, laser transport) to be discussed
 - Main cost driver
- Polarisation control need demonstration at ~<1e-3 precision AND accuracy → need (longterm) R&D (€€,manpower)
- Detector concept must be clarified still and simulated (manpower)
- Keep contact with EIC polarimetry group in the future

Supplementary material

Scattered photon rate

Compton polarimeter layout

Figure 25. Regular layout of ICS experiments realization.

Redundancy: measure both electrons and photons

Blondel et al., arXiv:1909.12245

FCC EPOL2 workshop: WG3 summary

But small opening angle of scattered particles:

- Electrons \rightarrow spectrometer
- Photons \rightarrow difficult to measure asymmetric distribution of a narrow spot \rightarrow long lever arm needed .

in a few seconds for pilots

Transverse distributions

Based on measurement of scattered particles transverse distributions (p. entation)

Realistic detector specifications to be drawn

Open questions: detector spatial resolution, longitudinal sampling, rates, combined fits, laser polarization flips,...

Blondel et al., arXiv:1909.12245

Laser helicity asymmetries

photons E = 45.6 GeV, λ_0 = 532.0 nm, κ = 1.628, P = 0.25

rons E_a = 45.6 GeV, λ_0 = 532.0 nm, κ = 1.628, P₁=0.25

Reproductible and well known laser helicity flip is required

30/09/2022

Blondel et al., arXiv:1909.12245

FCC EPOL2 workshop: WG3 summary

Nickolai's presentation