
#### WG4 Summary – Open Questions and Task List

- WG4 = EPOL-related measurements in particle-physics experiments
  - See also PJ, GW, AB talks on Mon 19, Thu 22, Mon 26 September
    - Nothing new has happened with WG4 since
      - → Only a short repetition today.



One million dimuon events

One million dimuon events

#### Summary

- Measurements relevant for EPOL performed with collision events
  - Centre-of-mass energy and absolute uncertainty, above the Z pole
    - With  $e^+e^- \rightarrow Z(\gamma)$ , W<sup>+</sup>W<sup>-</sup> and ZZ events
  - Centre-of-mass energy point-to-point uncertainty at the Z pole
    - With  $e^+e^- \rightarrow \mu^+\mu^-(\gamma)$  events
  - Centre-of mass energy spread, crossing angle, collision boost, absolute alignment
    - With  $e^+e^- \rightarrow \mu^+\mu^-(\gamma)$  events
  - Correlations of the above with the position, time, angle of the collision
    - All measurable, event-by-event, by the experiments
- Principle well established since the Energy Calibration paper <u>arXiv:1909.12245</u>
- New possibilities presented during this workshop
  - Extensive use (and pertaining calibration) of muon momenta (example of ILC)
  - Potential use of Bhabha events (example of CLIC)
  - Use of correlation between time and crossing angle (for  $\sqrt{s}$  RDP determination)

EPOL workshop 30 Sept 2022

# **Open questions**

- Many measurements based on processes with Initial State Radiation
  - Simplifying assumptions are used throughout: only one ISR photon in the beam direction
    - Is Initial State Radiation predicted with enough precision?
- The distribution of the radiated photon energy contains information on
  - $\sqrt{s}$ ,  $\sqrt{s}$  spread, boost, ISR, muon angular resolutions
- **The distribution of the crossing angle contains information on** 
  - ISR, muon angular resolution, detector alignment, crossing angle spread
    - Can these information be extracted individually?
    - Are muon angular resolution measurable with enough precision?
- These information are correlated with the time, position, plane of the collision
  - Can these correlations be simulated and measured with enough precision?
  - Can these correlations be exploited to improve the measurements?

# **Open questions**

- Most of the measurements in <u>arXiv:1909.12245</u> use the muon angles only
  - Except the  $\sqrt{s}$  point-to-point uncertainty, which uses muon momenta as well
    - Should the muon momenta be used throughout in addition (and how)?
    - Can the muon momenta be calibrated with enough accuracy and how?
    - What is the statistical bonus on  $\sqrt{s}$  and boost determination?
- Most of (all) the measurements in <u>arXiv:1909.12245</u> done with  $e^+e^- \rightarrow \mu^+\mu^-(\gamma)$  events
  - Statistics is of essence, especially if all correlations are to be mastered
    - Can we use Bhabha events? [especially useful for the forward region]
    - Can we use di-tau events? [angular resolution?!]
    - Can we use di-jet events? [order-of-magnitude larger stats]
- All the measurements will be affected by systematic biases (especially when absolute)
  - Can these biases be calibrated away and how?

### **Open questions**

- All these measurements will vary
  - With time
  - With machine settings
  - From one bunch to the other
    - Can we monitor these variations?
- All these measurements simulated with home-made generator and smearing
  - With ISR,  $\sqrt{s}$  spread, and boost
  - With uniform Gaussian smearing of muon momenta and angles
  - Without any variation of / correlations with position, time, plane, angle of collision
  - Some of the predictions result from back-of-the-envelope estimates
    - Are the predictions in <u>arXiv:1909.12245</u> robust and reliable?

#### • Can these measurements help monitor monochromatisation (a) $\sqrt{s} = 125$ GeV? How?

# Task list

- Main task(s): Answer the open questions!
- Many specific projects presented already in the opening talk
- □ A lot is still to be done with  $e^+e^- \rightarrow \mu^+\mu^-(\gamma)$  events
  - At the theoretical level
    - Required precision of ISR prediction
  - At the generator level
    - Generate collision energy, boost, position, time, plane, angle,  $\sqrt{s}$  spread
      - → AND THEIR CORRELATIONS
  - At the simulation level
    - Increase the level of detail of the simulation (from fast to full)
  - At the analysis level
    - Implement complete analyses and develop calibration methods (e.g.,  $e^+e^- \rightarrow Z(\gamma)$ ) at all  $\sqrt{s}$
  - At the detector level
    - Extract the detector requirements to reach the desired performance

# **Task list**

- Main task(s): Answer the open questions!
- Many specific projects presented already in the opening talk

HEIR and with di-jets imula other dileptons and with di-jets imula other dileptons and with other plane complete analyses and develop calibration methods (e.g.,  $e^+e^- \rightarrow Z(\gamma)$ ) at all  $\sqrt{s}$ 

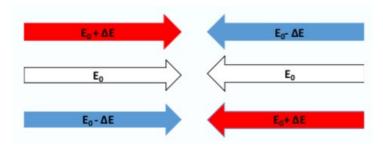
plane, angle, √s spread

Extract the detector requirements to reach the desired performance

EPOL workshop 30 Sept 2022

# Task list

- **D** Speaking of desired performance
  - Determine quantitatively the statistics needed to measure the collision parameters
    - So that they do not affect the statistical precision of the FCC-ee measurements
      - → At all centre-of-mass energies
      - → For each of the many measurements, e.g.,


#### Think out of the box

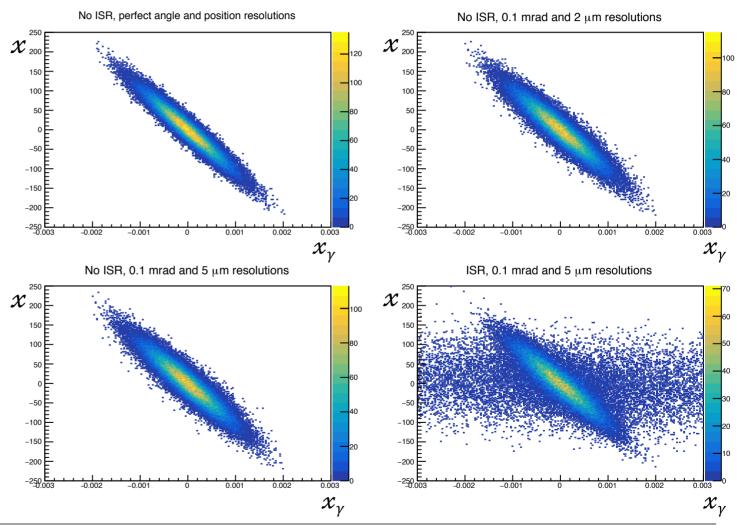
- Get new ideas
- Implement them
- Publish the result

| Ohaamaahla                                     |                     | ECC    | ECC    | Comment and                      |
|------------------------------------------------|---------------------|--------|--------|----------------------------------|
| Observable                                     | present             | FCC-ee | FCC-ee |                                  |
|                                                | value $\pm$ error   | Stat.  | Syst.  | leading exp. error               |
| $m_Z (keV)$                                    | $91186700 \pm 2200$ | 4      | 100    | From Z line shape scan           |
|                                                |                     |        |        | Beam energy calibration          |
| $\Gamma_{\rm Z} \ ({\rm keV})$                 | $2495200 \pm 2300$  | 4      | 25     | From Z line shape scan           |
|                                                |                     |        |        | Beam energy calibration          |
| $\sin^2 \theta_{\rm W}^{\rm eff}(\times 10^6)$ | $231480 \pm 160$    | 2      | 2.4    | from $A_{FB}^{\mu\mu}$ at Z peak |
|                                                |                     |        |        | Beam energy calibration          |
| $1/\alpha_{\rm QED}({ m m_Z}^2)(\times 10^3)$  | $128952 \pm 14$     | 3      | small  | from $A_{FB}^{\mu\mu}$ off peak  |
|                                                |                     |        |        | QED&EW errors dominate           |
| m <sub>W</sub> (MeV)                           | $80350 \pm 15$      | 0.25   | 0.3    | From WW threshold scan           |
|                                                |                     |        |        | Beam energy calibration          |
| $\Gamma_{\rm W} ~({\rm MeV})$                  | $2085 \pm 42$       | 1.2    | 0.3    | From WW threshold scan           |
|                                                |                     |        |        | Beam energy calibration          |
| m <sub>H</sub> (MeV)                           | $125250 \pm 170$    | 2.5    | 0.8    | From ZH direct reconstruction    |
|                                                |                     |        |        | $\sqrt{s}$ calibration           |
| m <sub>top</sub> (MeV)                         | $172740 \pm 500$    | 17     | small  | From $t\bar{t}$ threshold scan   |
|                                                |                     |        |        | QCD errors dominate              |

## **Task List: Example**

- A first look at monochromatization at  $\sqrt{s} = 125$  GeV, from a specific <u>example</u>
  - Beam energy spread: 0.052% (~32 MeV)
  - ♦ √s spread: 13 MeV
  - Anti-correlation: -90%




- $\mathbf{x} = \mathbf{D}_{\mathbf{x}}^{*} \times \Delta \mathbf{E}/\mathbf{E}$
- For a given  $\Delta E$ ,  $\sigma_x^* = \sqrt{\beta_x^*} \epsilon_x = 15 \,\mu m$
- L = 2.6 × 10<sup>35</sup> cm<sup>-2</sup>s<sup>-1</sup>,  $\sigma_{\mu\mu}$  = 8.3 pb
  - 2.16  $e^+e^- \rightarrow \mu^+\mu^-$  events / second
  - 250 events every 2 minutes

| Parameter                                                          | Symbol              | Unit                              | Value                                     |
|--------------------------------------------------------------------|---------------------|-----------------------------------|-------------------------------------------|
| Center-of-mass energy                                              | W                   | GeV                               | 125                                       |
| Horizontal, vertical rms emittance with<br>(without) beamstrahlung | $\varepsilon_{x,y}$ | nm                                | 2.5 (0.51), 0.002                         |
| Relative rms momentum deviation                                    | $\sigma_\delta$     | %                                 | 0.052                                     |
| Rms bunch length                                                   | $\sigma_z$          | mm                                | 3.3                                       |
| Horizontal dispersion at interaction point                         | $D_{\chi}^{*}$      | m                                 | 0.105                                     |
| Interaction-point beta function                                    | $\beta^*_{x,y}$     | mm                                | 90, 1                                     |
| Rms beam size at the interaction point                             | $\sigma_{x,y}^*$    | $\mu m$                           | 55, 0.045                                 |
| Full crossing angle                                                | $\theta_{c}$        | mrad                              | 30                                        |
| Vertical beam-beam tune shift                                      | ξy                  |                                   | 0.106                                     |
| Total beam current                                                 | Ie                  | mA                                | 395                                       |
| Bunch population                                                   | $N_b$               | $10^{10}$                         | 6.0                                       |
| Bunches per beam                                                   | $n_b$               |                                   | 13420                                     |
| Luminosity (luminosity without crab cavities) per IP               | L                   | $\mathrm{cm}^{-2}\mathrm{s}^{-1}$ | $2.6 \times 10^{35} (2.3 \times 10^{35})$ |
| Rms center-of-mass energy spread (total spread w/o crab cavities)  | $\sigma_W$          | MeV                               | 13 (25)                                   |

Example chosen: with crab cavities

## **Task List: Example**

- Measured horizontal position (in microns) vs relative longitudinal boost (10<sup>5</sup> events)
  - Easy fit for the first three plots
    - Bivariate normal distribution
  - ◆ Expected √s spread precision
    - 0.5% for 100,000 events
    - 5% for 1000 events
    - 10% for 250 events
  - 10% precision every 2 minutes
    - To be checked with ISR
  - Repeat with other schemes !



### A lot of work ahead !

- But also a lot of fun (speaking from experience)
  - And a possibility for many single-author publications
- **REMINDER ! A tutorial took place on Thursday afternoon (Marcin)** 
  - We learned how to generate, simulate, analyse dimuon events and more in FCCSW
  - Repeat the exercises
    - And apply what you have learnt to determine  $\sqrt{s}$ , spread, boost, angles, axes, etc.
- **To the young physicists: Your participation is essential** 
  - After all, you are going to operate this machine, right ?
    - These EPOL-related measurements make an ideal entry point to the FCC study
      - → With physics, software, detector, machine aspects all at once
      - → While being an ideal and orthogonal complement to your LHC day-to-day work