

FCC-EE OPTICS AND INTEGRATION OF POLARIMETER AND WIGGLERS

A. Blondel, M. Hofer, K. Oide, J. Wenninger, F. Zimmermann and gratefully acknowledging contributions from many colleagues in the FCC collaboration

FCCIS – The Future Circular Collider Innovation Study. This INFRADEV Research and Innovation Action project receives funding from the European Union's H2020 Framework Programme under grant agreement no. 951754

Motivation

- Design of a highest-luminosity, energy frontier e⁺e⁻ collider, optimized to study Z, W, Higgs, and top particles
- Brings several challenges for optics design, such as
 - Double ring e^+e^- collider with a circumference of 91 km, following the layout of a potential succeeding proton-collider
 - Minimal changes between four different operation modes
 - SR power limited to 50 MW/beam at all energies
 - Other "goodies": Tapering, top-up injection, crab waist collision scheme, $E_{critical}$ below 100 keV for the last dipoles upstream of IP
- Relying also on input from EPOL studies in guiding decisions

Arc cell considerations

) FCC

- FODO cell is used in the arcs due to high packing factor
 - Large momentum compaction at Z and W required for mitigation of collective instabilities and low emittance for H and tt operation
 - In current lattice, variable cell length implemented
 - For Z and W, cell length of ~100m
 - Reduce cell length for H and $t\bar{t}$ to 50m by installing quadrupoles in the gaps between dipoles
 - Tapering of magnets along the ring to compensate for sawtooth effect
 - For testing and optimizing fabrication, integration, and transport, a mock-up of an arc half-cell is in planning

Experimental IR

FCC

- Common IR layout for all working points
 - L* of 2.2 m and horizontal crossing angle of 30 mrad
 - Use of superconducting final focus quadrupoles
 - Asymmetric layout with weak bending of dipoles upstream of IP to keep SR E_{crit} < 100 keV
 - Detector solenoid with 2 T locally compensated by anti-solenoids
 - Local chromaticity correction in vertical plane, combined with crab sextupoles

Šee <u>K. Oide, PRAB **19**, 111005, Nov. 2016</u>

Integration of auxiliary insertions

- In 4-IP layout, beam crossing in every straight section required
- First design of a collimation insertion under study

FCC

• Betatron and momentum collimation in point F

- Top-up injection and extraction located in point B, combined insertion and compatibility with different injection schemes to be studied
 - Feasible injection schemes identified, using either nonlinear kicker or one turn closed orbit bump

RF insertions

- After preliminary survey of surface sites, RF placed in points H and L
 - To reduce the uncertainty on center-of-mass energy, RF located in a single place for Z and W operation
- In $t\bar{t}$ operation, RF cavities distributed between points H and L
 - Different RF settings and their impact on center-of-mass energies under study (see talk by J. Keintzel)
- Insertion layout modified between operation modes
 - At Z and W, separate RF for each beam with beam crossing in the middle of the insertion
 - Common RF for H and $t\bar{t}$ operation modes

) FCC

INTEGRATION OF WIGGLER AND POLARIMETER

EPOL operation scenario and Hardware

- "Natural" polarization rise time τ_p in FCC-ee at Z above 250h $(\frac{1}{\tau_n} \propto \frac{E^5}{\rho^3})$
 - Operation scenario foreseen:

FCC

- 1. Inject ~200 pilot bunches
- Use wigglers (ρ ↓) to achieve desired level of polarization (< ~5%) in reasonable amount of time
- 3. Turn wiggler off and fill up machine for physics
- Use polarimeter to measure polarization of pilot bunches while frequency sweep of RF-magnet

See arXiv:1909.12245 for more detail

Polarization risetimes for LEP and FCC-ee J. Wenninger, "<u>Polarised Electron</u> <u>Beams/Energy Calibration</u>", CAS 2018

Wiggler design

- Wiggler design for FCC-ee follows 3 three block LEP design
 J. Jowett and T. Taylor, "Wigglers for control of beam characteristics in LEP"
 - Length, field, and number of wigglers free parameters, but $\left(\frac{\sigma_E}{E}\right)^2 \propto \frac{E^4}{\gamma^3 \tau_n \Delta E_{loss}}$, (see PRAB 19, 101005, 2016)
 - Asymmetry parameter $r = \frac{B_+}{B_-} = \frac{L_-}{L_+}$
 - Length of one unit $(L_- + L_+) = 3.5m$, put together in packages of 3 units with L = 12 m (including extra 0.5m on each side to adjacent element)

Parameter	w/ wiggler	w/o wiggler	
Energy spread [MeV]	64	17	
$ au_\infty$ [h]	12	248	
ΔE_{loss} [MeV]	51.4	35.8	
ΔL [mm]	0.0135		

Parameter	FCC-ee	LEP
Number of units per beam	24	8
<i>B</i> ₊ [T]	0.7	1.0
L ₊ [mm]	430	760
r	6	2.5
<i>d</i> [mm]	250	200
Crit. Energy of SR photons [keV]	968	1350

Wiggler Location

- Should be installed in dispersion free section and ideally small β_x to limit impact on aperture
- Wigglers foreseen to be installed in 16m long drift space downstream of the interaction point
- Tracking studies show impact of wigglers on beam lifetime (see <u>K.Oide, FCC-Week 2022</u>)
 - Partially mitigated by turning off crab sextupoles

Polarimeter working principle

- Measure polarization based on spin-dependent Compton scattering of circularly polarized laser with e^{\pm} -beam
 - Detection not only of photons but also scattered electron
- Baseline: One polarimeter per beam
- Requirements:

FCC

- Dipole magnet with high precision field map $(\theta_{dipole} = 2 mrad)$
- Field free region ($L_{drift} = 100m$) after dipole to separate scattered e^{\pm} and γ from main beam
- Si-Detector for scattered e⁺/e⁻, roughly 400mm wide [ref] (cf. to beam separation of 300mm)
- Two options under study, either upstream of IP, or in RF-section

11

Polarimeter upstream of IP

- Preferred option to install polarimeter on inside beam to provide space for e^+/e^- detector
 - In current 4-IP layout, only the case upstream of experiments
 - Option downstream discarded due to interference with crab sextupole

Polarimeter upstream of IP

- Modified layout provides sufficient space for detectors,
 - Drift space to detector less than half of targeted length
 - Could be compensated by change of laser wavelength or detector [ref]
 - Moving dipoles and crab sextupoles closer to IP may help, but could have implication on DA, SR background, ..

Polarimeter upstream of RF

FCC

- Alternative proposal to increase beam separation of non-IP straight to accommodate detector between beams
 - During Z operation, cavities installed only in one RF section, polarimeter used in "empty" insertion

√βx

Polarimeter upstream of RF

○ FCC

• Rearranging some quadrupoles and splitting last dipole of the dispersion suppressor allows to meet requirements

Polarimeter upstream of RF

∩ FCC

- Rearranging some quadrupoles and splitting last dipole of the dispersion suppressor allows to meet requirements
 - Design consistent with RF layout for $H/t\bar{t}$ operation
 - Common design for both RF straight, with weak bending dipole (BWR) to avoid SR on cavities

 $L \approx 100 \,\mathrm{m}$

Conclusions and next steps

- FCC-ee aims at e^+e^- collision with unprecedented energies and record luminosity
 - Sheer size and ambitious parameter set to provide interesting (optics-)challenges
- Baseline optics design for collider ring established, continuous development to provide consistent design for Feasibility Study Report in 2025
- Despite enormous size of FCC-ee, some challenge to find optimal location for hardware for polarization measurements
 - Wigglers located downstream of each IP
 - Two options for Polarimeter under study
 - Location in an RF straight with larger beam separation
 - Upstream of IP compatible with multiple polarimeters in the ring, but may require changes in laser or detector
 - RF-kickers not discussed yet
 - Working assumption: system similar to LHC TFB sufficient ($L_{total} \approx 6 m$),

Thanks for your attention!