CERN STI/LP operational experience

Eduardo Granados

On behalf of the SY-STI-LP section

FCC EPOL Workshop 21st September 2022

Mandate

"The LP section is responsible for *laser installations and optical beamlines used to produce charged particle beams* in the CERN accelerators complex and research facilities"

- + Support for laser applications in the AT sector, including safety aspects.
- + Training networks (LISA)
- + Knowledge Transfer (@RILIS, @CLEAR)

Lepton and ion beams at CERN

- Next generation of colliders ("Higgs factories") will likely use leptons instead of hadrons exclusively:
 - CLIC (multi-TeV electron-positron collisions)
 - FCC-ee/eh
 - LHeC (PERLE)
- Accelerator R&D + synergies with other facilities worldwide:
 - AWAKE: Plasma wakefield accelerators and components (High gradient, LWFA)
 - CLEAR: Particle sources for medical applications (CHUV)
 - Radiation testing [for space missions, medicine] (ESA)
 - Gamma Factory at CERN
 - CompactLight Collaboration, Inverse Compton Scattering source at CLEAR.
 - Photocathode R&D: For high repetition rate sources (GHz) and plasmonically assisted photoemission.
- Ion Beam production at ISOLDE employing lasers

Outline

- Part I: Photocathode preparation facility at CERN
 - Development of co-deposition of Cs₂Te and Cs₃Sb photocathodes
 - Lifetime studies in RF and DC guns, XPS surface analysis
 - Plasmonic photocathodes
- Part II: Overview on CERN photoinjector activities
 - CTF3 / CLEAR Facilities
 - AWAKE experiment
 - Laser upgrades for photoinjectors
- Part III: Laser ion source RILIS at ISOLDE
 - The ISOLDE laboratory
 - RILIS laser laboratory
 - Diamond Raman laser development
 - MELISSA radioisotopes for medical applications
- Conclusions and outlook

Part I: Photocathode R&D at CERN

21/09/2022

"Common" photocathode technologies

Class	Material	QE	Wavelength	Gun	Application	
Normally conducting metals	Cu, Mg	10 ⁻⁵ - 10 ⁻⁴	UV	NC-RF	Low Rep rate FELs (LCLS, SwissFEL)	
Super-conducting metals	Super-conducting Nb, Pb netals		UV	SC-RF	High Rep rate FELs	
Positive electron affinity semiconductor	Cs ₂ Te, Cs ₃ Sb , K ₂ CsSb and others	0.1 – 0.2	Visible – UV	NC-RF, DC	FELs, ERLs	
Negative electron affinity semiconductor		0.1-0.35	IR – Visible	DC (XHV)	Polarized sources, ERLs (ALICE)	

Metals

- Low quantum efficiency -> requires high power lasers -> plasma is formed
- Robust and simple
- Semiconductors
 - High quantum efficiency at extended wavelength range.
 - More difficult to maintain x-rays and ions can cause decomposition and surface damage, vacuum...
 - Cs₂Te is quite standard, but requires UV

- CERN Photoemission lab
 - Cs_2Te photocathodes (UV, high QE) \rightarrow current workhorse for AWAKE and CLEAR guns.
 - Bi-alkali photocathodes (green, high charge) → proposed for CLIC.
 - Cu cathodes for single bunch RF guns
 - NEW: Plasmonically enhanced metal photocathodes.

Photoemission lab @ CERN

- >25 years producing cathodes
- Fabrication, lifetime studies, characterization

Co-deposition process

- Co-deposition: Cs and Sb (or Te) evaporated at the same time. The metallic elements can mix together in the vapour phase.
- The evaporators power is adjusted \geq in order to reach a maximum value of QE.
- Average pressure during the process is 1e-8 mbar.
- Once the cathodes are fabricated. >they undergo QE testing spatially, lifetime studies and XPS characterization.

H. Panuganti, E. Chevallay, V. Fedosseev, M. Himmerlich, Synthesis, surface chemical analysis, lifetime studies and degradation mechanisms of Cs-K-Sb photocathodes, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated 8 Equipment, Volume 986, 2021

Photocathode production, transport and characterization

Cs₃Sb and CS₂Te photocathode experience at CERN

- Cs₃Sb seems to be less robust than Cs₂Te and more sensitive to non-optimal operation conditions.
- For obtaining good lifetimes with Cs₃Sb cathodes it is important to have the following conditions:
 - Excellent vacuum
 - Very stable phase between RF and laser
 - Linear charge extraction regime of the gun. Otherwise non-extracted e- can cause desorption in the gun -> bad lifetime.
 - Good laser beam shape characteristics
- More studies are needed, but mature technology with great potential for high charge production in ERLs for example.
- Capability of adapting photocathode design to specific projects, including future accelerators such as LHeC and FCC-eh.

Plasmonically enhanced metallic photocathodes

Part II: CERN Photoinjector activities

21/09/2022

12

CLIC accelerator concept

CLIC Test Facility (CTF3)

Laser development for CLIC

15

CLIC drive beam laser in 2022 (now for Inverse Compton Scattering experiments at CLEAR in 2023)

CLIC drive beam laser in 2022 (now for Inverse Compton Scattering experiments at CLEAR in 2023)

- 2 laser set-ups at CLEAR suitable for ICS:
 - PHIN 1 has a lower burst repetition rate of 5 Hz. The beam quality is low, more than 50% power may not be coupled with the best mode matching.
 - The One-five laser is useful for higher Q cavities. It has a near-perfect beam quality, compact and fully independent of the CLEAR control system → would like to consider this laser for FP cavity
- Fabry-Perot enhancement cavity in burst mode could be feasible

Parameter	PHIN 1	One-five	Photo-injector	Unit
P_{avg}	7	2	10	W/s
Burst rep rate	5	10	10	Hz
Micropulse rep rate	0.5	0.5	1.5	GHz
Burst duration	$< 300 \ \mu s$	< 1 ms	< 120 ns	
Wavelength	1047	1047	1047	nm
Pulse duration	4	4	4.7	\mathbf{ps}
Micropule energy	9.3	0.4	10 - 15	μJ
Burst energy	1400	200	2.3	mJ
$\#$ pulses in each burst, N_p	150,000	500,000	180	

Pierre Favier et al, Phys. Rev. Accel. Beams 21, 121601 (2018)

Table 2: Projected parameters of the photons generated bythe HPCI-based ICS source.

Parameter	Value	Unit
Energy	360	keV
Source <i>rms</i> spot size, σ_{γ}	10	μ m
Total flux, \mathcal{F}	9×10^{13}	ph/s
Flux in a 1.5 mrad cone	2×10^{13}	ph/s
Average brilliance, $\mathcal B$	4×10^{14}	1
Peak brilliance, $\hat{\mathcal{B}}$	3×10^{22}	1
1 ph/(s mm ² mrad ² 0.1%BW).		

Figure 2: Scattered photon spectra from RF-Track generated by the HPCI-based ICS source. The 0.6 mrad spectrum corresponds to an energy bandwidth of 5%.

Musat, V.; Latina, A., D'Auria, G. A High-Energy and High-Intensity Inverse Compton Scattering Source Based on CompactLight Technology. Photonics 2022, 9, 308. https://doi.org/10.3390/photonics9050308

CLIC main beam -> CLEAR facility

Multipurpose e- accelerator operating since 2017 and until 2025.

- CLEAR is a versatile 200 MeV electron linac + a 20 m experimental beamline, operated at CERN as a multi-purpose user facility.
- Currently >98% uptime for photoinjector.
- Providing a test facility at CERN with high availability, easy access and high quality e- beams.
- Performing R&D on accelerator components, including beam instrumentation prototyping and high gradient RF technology
- Providing an irradiation facility with high-energy electrons, e.g. for testing electronic components in collaboration with ESA or for medical purposes (VHEE/FLASH)
- Performing R&D on novel accelerating techniques electron driven plasma and THz acceleration.
- Maintaining CERN and European expertise for electron linacs linked to future collider studies

European Space Agency

CLEAR Facility photoinjector

CLEAR laser development

CLEAR laser development

Oscillator output

Parameter	Value
P_avg	321.1 mW
P_max	322.6 mW
P_min	320.2 mW
P_std	0.47%
Pk-Pk	0.75%

Pre-amp output

Parameter	Current value
P_avg	9.68 W
P_max	9.75 W
P_min	9.60 W
P_std	0.37%
Pk-Pk	1.53%

Main amplifier output

Parameter	Value
E_avg	2.726 mJ
E_max	2.781 mJ
E_min	2.697 mJ
E_std	0.52%
Pk-Pk	3.08%

PHIN electron gun -> AWAKE Collaboration

a section of RF cavity

- Conventional Accelerators are large (100 m) and expensive (10-100 M\$)
- Conventional accelerators cannot achieve better than a few 10 MV/m or you get breakdown
- Plasma waves are a possible alternative – providing a route to small scale accelerators and radiation sources

a plasma wave

e+/e- collider @ 1 TeV in a few 100s meters

Laser technology to develop High repetition rate (10's kHz) High average power (100's kW) High efficiency (10's de %)

Leemans & Esarey, Physics Today 2009

MyskE Collaboration, Phys. Rev. Lett. 122, 054802 (2019). M. Turner et al. (AWAKE Collaboration), Phys. Rev. Lett. 122, 054801 (2019). M. Turner, P. Muggi et al. (AWAKE Collaboration), Phys. Rev. Lett. 120, 30(1302 (2020)) F. Braumrueller, T. Nechaeva et al. (AWAKE Collaboration), Phys. Rev. Lett. July 30 (2020). A.A. Gorn, M. Turner et al. (AWAKE Collaboration), Phys. Rev. Lett. July 30 (2020).

F. Batsch, P. Muggli et al. (AWAKE Collaboration), PRL (2021)

Advanced Proton Driven Plasma Wakefield Acceleration Experiment (AWAKE)

- Accelerator R&D project based at CERN, taking advantage of high energy proton beams
- "It is a proof-of-principle experiment investigating the use of plasma wakefields driven by a proton bunch to accelerate charged particles"
- Collaboration of 22 institutes world-wide
- AWAKE Run 1:
 - 1st milestone: Demonstrate seeded self-modulation of the proton bunch in plasma (2016/2017)
 - ^{2nd} milestone: Demonstrate electron acceleration in plasma wakefield driven by a self-modulated proton bunch (2018)
- AWAKE Run 2 (2021-2028):
 - Accelerate an electron beam to higher energies of 0.5-1 GV/m while preserving the electron beam quality and demonstrate scalable plasma sources technology.
- AWAKE after 2028: Application to physics experiments (dark photon search etc).

A IV-A-K-E

21/09/2022

AWAKE Run 1

- Proof-of-principle experiment: wakefield plasma acceleration using a proton bunch as a driver, a world-wide first.
- It demonstrated acceleration of a low-energy witness bunch of electrons from 15-20 MeV to several GeV over a short distance (~10 m) by creating a high acceleration gradient of several GV/m
- Our contribution:
 - UV beam generation, delivery, and photocathode, diagnostics.
 - IR beam delivery for plasma generation, diagnostics.
 - Experimental and laser support

AWAKE Run 1 laser beamlines

Laser beam to plasma cell

- λ = 780 nm
- t pulse = 120 fs
- E = 450 mJ

Laser beam to streak camera ("time marker")

- $-\lambda$ = 780 nm
- t pulse = 120 fs,
- E ≈ 0.01 mJ

Laser beam to electron gun

- $\lambda = 260 \text{ nm}$
- t pulse = 0.3-10 ps
- E = 0.1 2 µJ

AWAKE Run 1 laser beamlines

Problems and their mitigation

- Pointing instability
 - Use of rigid support for optics
 - Applying beam imaging
 - Transport in vacuum

Beam drifts

- Temperature stabilization
- Alignment algorithm

Optics damage

- Beam size increasing
- Decreasing the pulse energy within the possible margin: E (IR) < 200 mJ

AWAKE Run 1 e- injector

Cs₂Te cathodes produced in the Photoemission lab

Parameter	Value				
Beam energy	18.5 MeV				
Energy spread	0.5 %				
Stability	10^-2				
RMS bunch length	2-3 ps				
Bunch charge	100-600 pC				
Emmitance	2-5 um				
Beam size plasma focus	~190 um				

AWAKE Photocathode

 Photocathode performance at AWAKE RFphotoinjector

- Maximum measured QE ~ 26%, good agreement with DC-GUN measurements
- Saturation Fluence ~ 1.5 µJ/cm²
- Issues to measure pulse energy bellow 5 nJ and charge higher than 800pC during the commissioning tests
- Photocathode performing very well during last months of intense operation at AWAKE run 2b

AWAKE photoinjector illumination

21/09/2022

V. Fedosseev et al "Generation and delivery of an ultraviolet laser beam for the RF-photoinjector of the AWAKE electron beam", 10th International Particle Accelerator Conference (2019)

Mapping charge capture at AWAKE

E. Granados et al "Mapping charge capture and acceleration in a plasma wakefield of a proton bunch using variable emittance electron beam injection", <u>arXiv:2206.14075</u> (2022) 30

AWAKE run 2 (2021-2028)

AWAKE 2 (ionizing lasers beam delivery)

AWAKE

AWAKE Run 2 e- gun

Femtosecond gun from INFN

- Will be installed at CLEAR during 2021-2022
- Possibility of *virtual* and *real* diagnostics
- Initially with Cu cathode, eventually Cs₂Te
- Compatible load-lock system

UV reflected beam (diagnostics)

AWAKE Run 2 photoinjector laser

- Light Conversion Pharos system already purchased (delivery Dec 2020, integration & commissioning mid-2022)
 - Yb-doped fiber technology
- Designed to operate with both Cu or Cs2Te
- Variable pulse duration from < 300 fs up to > 5 ps
 - Requires multiple harmonic stages or UV stretcher.
- Synchronizable to RF (1.5 GHz) reference
- Expected maximum charge production:
 - Cu cathode : ~ 400 pC
 - Cs₂Te : > 1 nC

Typical PHAROS near field beam profile at 200 kHz

Pulse energy @ 1030 nm	2 mJ			
Pulse energy @ 257 nm	~ 400 uJ (RMS <0.06%)			
Repetition rate	0 – 200 kHz			
Average Power	20 W			
M ²	<1.3			
Pulse duration	190 fs – 10 ps			

AWAKE Run 2 femtosecond e- gun

- Demonstrate velocity bunching with x-band and emittance preservation/control
- Show reliable high gradient x-band operation
- Study mechanical/integration aspects
- Test diagnostics
- Optimise final design for AWAKE
- Get team together, gain momentum for challenging AWAKE Run2 injector

Prototype injector in CTF2:

60-70 MeV and typically 100 pC single bunch, bunch length 200-300 fs (goal), emittance ~ 1 um, Laser osc. frequency 75 MHz, rep. rate up to 3 kHz, Length: 5 m

AWAKE Run 2 LWFA injector (e4AWAKE)

- The project aims to realize "<u>laser-assisted electron</u> <u>injection</u>" in AWAKE, as proposed in Ref. [1], taking advantage of the AWAKE Run 2 experimental setup without interfering with it.
- Current proposal includes input from:
 - CERN: (BE-ABP-LAF, SY-STI-LP, SY-BI-PM, TE-VSC-BVO, HSE-RP-AS, EN-MME-EDS, TE-MSC-NCM, TE-VSC-SCC, EN-ACE-OSS, SY-RF-MKS, BE-CEM-MRO, BE-CEM-MTA)
 - Max Plank Institute for Physics, Munich, Germany: use of the AWAKE laser, laser expertise, Rb expertise and used of Rb glovebox, Rb
 - Dusseldorf University, Germany: simulation of wakefield acceleration in Run 2c setup
 - Wigner Institute, Budapest, Hungary: simulation of laser ionization in both demonstrator chamber and Run 2c setup
 - Moscow State University, Russia: expertise and design of demonstrator chamber
 - LOA, Ecole Polytechnique, ENSTA Paris, France and LIDYL, CEA, CNRS, Universite Paris-Saclay, France: expertise and design of demonstrator chamber

Sketches and picture for Demonstrator, based on [2] and [3] The CERN demonstrator would likely be smaller, with diagnostics outside the vacuum. [1] V. Khudiakov, A. Pukhov, Optimized laser-assisted electron injection into a quasi-linear plasma wakefield, <u>https://arxiv.org/abs/2109.03053</u>

[2] M. Thevenet et al, Vacuum laser acceleration of relativistic electrons using plasma mirror injectors, *Nature Physics* **12**, pages 355–360 (2016), <u>https://arxiv.org/abs/1511.05936</u>

[3] I. Tsymbalov et al, Well collimated MeV electron beam generation in the plasma channel from relativistic laser-solid interaction, *Plasma Phys. Control. Fusion* **61** 075016 (2019) <u>https://iopscience.iop.org/article/10.1088/1361-6587/ab1e1d</u>

Part III: Laser ion sources at ISOLDE (RILIS)

21/09/2022

37

Ion beams, ISOLDE in the CERN accelerator complex

The ISOLDE Laboratory: target and experimental areas

- 12 beam lines P
- 10 fixed experimental setups
- Temporary setups for travelling experiments
- Over 50 different physics experiments per year.

Resonance Ionization Laser Ion Source (RILIS)

RILIS Ion beams

_				Elen	nents	ioniz	ed wi	ith RI	LIS									
н	1		Ionization scheme tested (dve or Ti Sa)												2 He			
-	2													10				
Li	3	Be RILIS ionization feasible B C N O F												Ne				
	11	12											18					
Na		Mg											AI	Si	Р	S	CI	Ar
	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
Κ		Ca	Sc	Ti	٧	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb)	Sr	Y	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	I	Хе
	55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs		Ba	La	Hf	Та	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Ро	At	Rn
	87	88	89	104	105	106	107	108	109	110	111	112						
Fr		Ra	Ac	Rf	На	Sg	Ns	Hs	Mt									

58	59	60	61	62	63	64	65	66	67	68	69	70	71
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Ра	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

Ion beams of 48 elements have been produced at ISOLDE with RILIS

RILIS at ISOLDE Facility

RILIS laser setup (simplified)

RILIS laser setup

Diamond Raman lasers at RILIS

K. Chrysalidis et al, Opt. Lett. 44(16), 3924–3927 (2019)

D. Talan Echarri et al., Optics Express 28(6), 8589 (2020)

Diamond Raman lasers at RILIS

Narrowband:

To enable laser spectroscopy with a laser line width ~ 10x narrower than is currently possible with RILIS lasers

KT project "Singular light"

Stokes spectral squeezing via phonon resonant interaction in diamond

E. Granados, et al, "Spectral synthesis of multimode lasers to the Fourier limit in integrated Fabry–Perot diamond resonators," Optica 9, 317-324 (2022)

OPTICA

MEDICIS Laser Ion Setup at CERN (MELISSA)

MEDical Isotopes Collected from ISOLDE – facility for production of medical isotopes for research in

radiopharmaceutical science

Long-lived radio-isotopes

- Produced in a cold target (at ISOLDE or elsewhere)
- Transported to the MEDICIS front-end
- Extracted by heating the target material
- Ionized and mass-separated
- Collected on a substrate
- Shipped to medical research laboratories

Setup similar to RILIS, based on Ti:Sapphire lasers

Summary

- Multiple users facility at CERN profit from charged particle beams produced using laser technology
 - Electron sources of existing and future lepton accelerator requite robust photocathodes and high-quality laser beams
 - Plasma created by high-intensity laser beams enables conditions for selfmodulation of high energy proton bunches and wake-field acceleration
 - RILIS systems at ISOLDE and MEDICIS are essential for isobaric purity of delivered radioactive ion beams
- Laser development directions are defined by expanding requirements for new and higher quality particle beams

Acknowledgements

Sources, Targets and Interactions (STI) – Simone Gilardoni

Lasers and Photocathodes section (LP) – Bruce Marsh

Current members:

Katerina Chrysalidis – STAFF Eduardo Granados – STAFF Ralf Rossel – STAFF

Isabelle Fontaine – FELL Reinhard Heinke – FELL A. Jaradat – FELL Miguel Martinez – FELL Cyril Bernerd – PJAS

Ralitsa Mancheva – DOCT Baptiste Groussin – TECH Isabelle Hendriks – TECH Georgios Stoikos – TECH

Former members:

Valentin Fedosseev Eric Chevallay Shane Wilkins Camilo Granados Matthieu Veinhard Christoph Seifert Tom Day Goodcare Sebastian Rothe Daniel Fink Harsha Panuganti Anna-Maria Bachmann Florence Friebel Daniel Talan Echarri Christoph Hessler Mikhail Martyanov Piotr Gach Irene Martini Marta Csatari Massimo Petrarca Nathalie Lebas Vaila Leask Vadim Gadelshin

Thank you for your attention!

