Compton Polarimeters in EIC

Zhengqiao Zhang

Brookhaven National Laboratory

Electron-Ion Collider

Electron-Ion-Collider (EIC)

EIC Design Goals:

- Large range of center of mass energies: $E_{cm} = 20-140 \text{ GeV}$;
 - Access to gluon dominated region and wide kinematic range in x and Q²
- Large range of Ion Species: Protons Uranium;
 - Access the highest gluon densities ($Q_s^2 \sim A^{1/3}$)
- High Luminosity (100x HERA): $L = (0.1-1) \cdot 10^{34} \text{ cm}^{-2} \text{s}^{-1} \longrightarrow 10-100 \text{ fb}^{-1}$;
 - Studying observables as a fact of x, Q^2 , A, etc.
- Collisions of highly polarized e and p (and light ion) beams with flexible bunch by bunch spin patterns: ≥ 70%;
 - Access to spin structure and 3D spatial and momentum structure
- Good background conditions;
- EIC is using part of RHIC facility at BNL which is operating at its peak ;

EIC polarimeters

- EIC requires 3 electron polarimeters;
 - Compton Polarimeter in ESR
 - Polarimeter for RCS (A Compton Polarimeter is proposed)
 - Polarimeter at source (Mott Polarimeter)
- Compton polarimeters for RCS and ESR have similarities but will operate in different modes (ESR single photon/counting mode; RCS multiphoton/integrating mode)

Requirements of electron polarimeter

- The polarimeter needs to be placed as close as possible to IP-6;
- The inner IR-6 region is very crowded, it is not possible to place the whole Compton Polarimeter system;
- Compton Polarimeter in ESR is placed at 72m away from IP6;

- Non-destructive
- Need to measure both longitudinal and transverse components;
 - The longitudinal polarization can be measured by an energy asymmetry of the Compton photons & electrons flipping the circular laser polarization direction;
 - The transverse polarization can be measured by a spatial asymmetry of the Compton photons & electrons;
- Measure bunch-by-bunch polarization;
- Measure with high precision ~1%;

Layout of polarimeter in ESR

Time Requirements

			_
Species	proton	electron	
Energy [GeV]	275	18	
CM energy [GeV]	140.7		
Bunch intensity [10 ¹⁰]	18.9	6.2	
No. of bunches	290		
Beam current [A]	0.69	0.227	
RMS norm. emit., h/v [µm]	5.2/0.46	845/70	.,
RMS emittance, h/v [nm]	17.6/1.6	24.0/2.0	
β*, h/v [cm]]	417/38	306/30	•
IP RMS beam size, h/v [µm]	271/24		
K_x	11.1		
RMS $\Delta \theta$, h/v [µrad]	65/65	89/82	
BB parameter, $h/v [10^{-3}]$	3/3	92/100	
RMS long. emittance $[10^{-3}, eV \cdot s]$	36		
RMS bunch length [cm]	6	0.9	
RMS $\Delta p/p$ [10 ⁻⁴]	6.8	10.9	
Max. space charge	0.007	neglig.	
Piwinski angle [rad]	2.8	0.9	
Long. IBS time [h]	2.0		
Transv. IBS time [h]	2.0		
Hourglass factor H	0.99		
Luminosity $[10^{33} \text{cm}^{-2} \text{s}^{-1}]$	0.32		

"EIC Conceptual Design Report", BNL, Up- ton, NY, USA, Rep. **EIC CDR, 2021**

$$L = f_b N_e N_{\gamma} G$$

Geometric factor:

 $G = \frac{1 + \beta \cos\theta}{2\pi \sqrt{\sigma_y^2 + \sigma_{\gamma y}^2} \sqrt{\sigma_x^2 (\beta + \cos\theta)^2 + \sigma_{\gamma x}^2 (1 + \beta \cos\theta)^2 + (\sigma_z^2 + \sigma_{\gamma z}^2) \sin^2\theta}}$

$$f_b = 2.2852 \times 10^7$$
; $Ne = 6.2 \times 10^{10}$; $N_{\gamma} = 2.84974 \times 10^{12}$;

$$\sigma_{\gamma x} = 0.1mm; \sigma_{\gamma y} = 0.1mm; \sigma_{\gamma z} = 1.3mm;$$

RCS Compton Polarimeter

RCS properties

- RCS accelerates electron bunches from 0.4GeV to full beam energy (5-18 GeV)
- Bunch frequency $\rightarrow 2Hz$
- Bunch charge —> up to 28 nA
- Ramping time = 100 ms

Polarimetry challenges

- Analyzing power often depends on beam energy
- Low average current
- Bunch lifetime is short

Compton polarimeter can also be used for measurement of polarization in RCS

- Measurements will be averaged over several bunches can tag accelerating bunches to get information on bunches at fixed energy
- Requires measurement in multiphoton mode (~1000 backscattered photons/crossing)

Summary

- EIC requires 3 lepton polarimeters;
- RCS Polarimetry integrated in the inner IR-6 region;
- ESR Polarimeter integrated 72 m away from IP-6;
- High precision bunch by bunch polarization measurements are critical for the EIC physics program;

Thanks.