# Background sources and synchrotron radiation issues at JLAB



#### **Compton Polarimeter Backgrounds**



- Three primary sources of background
  - Bremsstrahlung
  - Synchrotron radiation
  - Beam halo interaction with beamline elements
- One special source of background (just for some experiments)
  - Neutrons from heavy targets (PREX)



## **Compton Operation Mode**



Photon detector rates

Laser locks and unlocks regularly to allow measurement of backgrounds

- ightarrow Backgrounds highly dependent on beam quality
- → Sometimes extensive tuning is required to achieve good backgrounds *dominant background from beam interaction with apertures in beamline*





Example: stored cavity power droops at high e-beam currents

 $\rightarrow$  Source unknown: synch light or beam scraping heating and distorting mirrors?



4

Hall A/C Compton polarimeters use narrow apertures to help protect cavity mirrors from →Large beam related backgrounds →Direct beam strikes

Large beam size, halo will result huge backgrounds from scraping on narrow apertures  $\rightarrow$  ion chambers, machine protection system shuts off beam

This system has drawbacks  $\rightarrow$  very small halos can still result in significant backgrounds

→ Halo may be small enough to run, but there still may be a lot of junk in your detectors





### **Beam Halo and Backgrounds**



Yves Roblin and Arne Freyberger JLAB-TN-06-048

Sensitivity to beam halo makes us very sensitive to beam tune  $\rightarrow$  it is sometimes not possible to achieve ideal tune for Compton and required parameters for experiment

Put model of JLab beam halo (11 GeV) in GEANT model  $\rightarrow$  Halo forced to zero at edge of (1 inch) beam pipe



### **Examples – Hall C Photon Detector**



Energy spectrum from Hall A

→Beam energy = 8.8 GeV,
beam current = 20-50 µA
→Laser power ~ 2 kW

Low energy Bremsstrahlung contribution suppressed by discriminator threshold





## **Synchrotron Radiation at Higher Energies**



Photon detector sees synchrotron radiation, primarily from dipoles 2 and 3

Before JLab 12 GeV Upgrade, synchrotron was mitigated with minimal shielding before detector  $\rightarrow$  At 6 GeV, this was becoming less effective

At higher energies, shielding alone not sufficient  $\rightarrow$  need to mitigate source of synchrotron

J. Benesch et al, Phys. Rev. ST Accel. Beams 18 (2015) 11, 112401





9

## **Dipole Shims for Synchrotron Mitigation**

-2

0

Shims added to dipoles in chicane to extend effective length – reduce synchrotron contribution

**Basic Dipole** 

— 3 mm Pb

---- 5 mm Pb

**R**3

**R**7 As Built

2

vertical offset (mm)

6 mm aperture

107

10<sup>6</sup>1

10<sup>5</sup>⊦

 $10^{3}$ 

-6



10 mm aperture

## **Initial Higher Energy Running (8.5 GeV)**



## **Initial Higher Energy Running (10.6 GeV)**



Acc0/NAcc0, Run=2751, 10mm Aperture



### **Remotely Adjustable Collimator ("JAWS")**

Synchrotron background primarily in vertical direction → Added remotely

adjustable collimator to optimize signal/background



#### Photon Detector with JAWS (8.8 GeV)



<sup>14</sup> Jefferson Lab

#### Photon Detector with JAWS (8.8 GeV)



<sup>15</sup> Jefferson Lab

## Photon Detector with JAWS (8.8 GeV)



Acc0/NAcc0, Run=2960, 15mm Aperture



## **Neutron Backgrounds**

PREX experiment in Hall A used lead target to measure weak charge radius  $\rightarrow$  Many thermal neutrons in hall when beam on target

Used Gd2SiO5:Ce (GSO) for photon detection  $\rightarrow$  <sup>157</sup>Gd has large thermal neutron capture cross section



Allison Zec, Ph.D. thesis



## Summary

- Dominant background at JLab Compton polarimeters due to beam interaction with material in beamline
  - Most likely small apertures in Fabry-Perot cavity
  - This background can be controlled with beam tuning but sometimes requires much effort and time
- Bremsstrahlung not a significant issue vacuum in Compton area generally at the few 10<sup>-8</sup> level
- Synchrotron was not a major issue before 12 GeV Upgrade
  - Becomes a significantly worse at JLab's highest energies
  - Can be controlled with shielding and appropriate collimation (JAWS)
- In some unique circumstances, neutrons can be a problem
  - PREX experiment (lead target) and GSO detector

