

— 2d FCC EPOL WORKSHOP —

The VEPP-4M laser polarimeter system

Stepan Zakharov^{1,2}, Ivan Nikolaev¹, Vyacheslav Kaminsky^{1,2}, Nikolay Muchnoi¹, Vasily Kudryavtsev¹, Lev Shechtman¹, Sergey Nikitin¹, Anton Bogomyagkov¹ Vladimir Blinov^{1,2,3}, Pavel Piminov¹

¹Budker Institute of Nuclear Physics ²Novosibirsk State University ²Novosibirsk State Technical University

September 20, 2022

The VEPP-4M collider and the KEDR detector

The KEDR detector

- Multipurpose particle detector
- Precise measurements of J/ψ , ψ' mesons and τ lepton

Resonant depolarization history

- 1968: RD method was introduced at BINP
- 1975: First results on absolute energy calibrations with $\delta E/E \sim 10^{-4}$

• 1983: $\Upsilon(2\mathsf{S})$ mass measurement by ARGUS and CB collaborations

•
$$\delta E/E = 4 \cdot 10^{-5}$$

Depolarizing frequency scan for DORIS II collider.

Resonant depolarization history

- 1984: CUSB collaboration measured $\Upsilon(1S)$ mass
- Relative error: $\delta E/E \simeq 1.1 \cdot 10^{-5}$

The experimentally measured time dependence of the polarization in CESR

- 1992: LEP energy measurement at Z-boson region
- Results variability was $\pm 6\cdot 10^{-5}$

The localization of the depolarizing frequency within the sweep for the LEP collider

Motivation

- Future measurements of the $\Upsilon\text{-meson}$ mass and leptonic width
- Expecting 50 keV error for $\Upsilon(1S)$ mass
- High precision energy determination at the interaction point
- Development of the laser polarimeter system

VALUE (MeV)		DOCUMENT ID		TECN	COMMENT
$\textbf{9460.30} \pm \textbf{0.26}$	OUR AVERAGE Error includes scale factor o	f 3.3.			
$9460.51 \pm 0.09 \pm 0.05$		¹ ARTAMONOV	2000	MD1	$e^+ \; e^- ightarrow { m hadrons}$
$9459.97 \pm 0.11 \pm 0.07$		MACKAY	1984	REDE	$e^+ \; e^- ightarrow { m hadrons}$
	 We do not use the following data for averages, fits, limits, etc. 				
$9460.60 \pm 0.09 \pm 0.05$	2,	³ BARU	1992B	REDE	$e^+ \; e^- ightarrow { m hadrons}$
9460.59 ± 0.12		BARU	1986	REDE	$e^+ \; e^- ightarrow { m hadrons}$
$9460.6 \ {\pm}0.4$	4,	³ ARTAMONOV	1984	REDE	$e^+ \; e^- ightarrow { m hadrons}$

Screenshot from pdglive.lbl.gov: upsilon meson mass summary

Resonant depolarization recap

- Beam polarization by Sokolov-Ternov effect: $P = G\zeta_0(1 e^{-t/G\tau_p})$
- Applying LFM depolarizing field
- When The resonance is achieved: $\omega_s = k\omega_r \pm \omega_d$
- At this moment the electron beam depolarizes $(\omega_d, \omega_r
 ightarrow \omega_s)$
- We extract the beam energy from the frequencies relation:

$$\omega_s = \omega_r \left(1 + \frac{q'_e}{q_e} \frac{E}{mc^2} \right)$$

 ${}^{*}q_{e}^{\prime}$ and q_{e} are anomalous and normal part of the gyromagnetic ratio

Stepan Zakharov

Laser polarimeter optical layout

Laser

- Nd:YLF with frequency doubling
- 527 nm wavelength
- Operating frequency up to 4 kHz
- Average power 2 W
- Pulse width 5 ns (1.5 m length)

Photon coordinate detector

Stepan Zakharov

Fast Signal Control System

How to register e^- beam polarization

- Photon beam asymmetry scale:
 - $\Delta \langle y \rangle = \frac{\omega_0}{2m_e} P \ell \Delta V \sim 100 \ \mu m$
- Photon beam size: $\ell/\gamma \sim ~3.5~mm$
- Looking at the difference: $\frac{d\sigma_L}{dxdy} - \frac{d\sigma_R}{dxdy}$ it is possible to register vertical asymmetry
- Beam polarization affects the amplitude of this asymmetry

Compton backscattering: theoretical distribution

**P* – average e^- beam polarization, ΔV – difference of the circular polarization states ℓ – distance between the interaction point and photon detector

Stepan Zakharov

How to register e^- beam polarization

- Photon beam asymmetry scale:
 - $\Delta \langle y \rangle = \frac{\omega_0}{2m_e} P \ell \Delta V \sim 100 \ \mu m$
- Photon beam size: $\ell/\gamma \sim ~3.5~mm$
- Looking at the difference: $\frac{d\sigma_L}{dxdy} - \frac{d\sigma_R}{dxdy}$ it is possible to register vertical asymmetry
- Beam polarization affects the amplitude of this asymmetry

*P – average e^- beam polarization, ΔV – difference of the circular polarization states ℓ – distance between the interaction point and photon detector

Stepan Zakharov

How to extract e^- beam polarization state

Distribution asymmetry

$$A = \frac{N[y>0] - N[y<0]}{N[y>0] + N[y<0]}$$

- $\checkmark~$ Simple and fast method
- $\times\,$ Sensitive to the beam shape and position
- Detector acceptance causes systematic uncertainty

Projection Fit (1D)

- ✓ Robust when beam shape is controlled
- Fails to describe the distribution for the elliptically polarized light

Full shape fit (2D)

- ✓ No reduction of dimensionality: utilize all information from data
- \times Time consuming
- × Doesn't work on complicated beam forms

Is it possible to develop beam shape independent method?

What we actually see at the detector?

• Scattered photons distribution:

$$D = \varepsilon(x, y) \cdot \left[\frac{d^2\sigma}{dxdy} \bigotimes B(x, y)\right]$$

- It is a convolution of the Compton x-sec and smearing factors:
 - Electron beam emittance
 - Optical intensity distribution
 - Photon scattering and conversion
 - Clusters formation in the detector
- This complicates the analysis
- And decreases the effect extraction stability

Scattered photons coordinate distributions difference for the left and right optical polarization

Extracting beam shape from data

• We need to separate Compton distribution from all smearing factors:

$$D = \varepsilon(x, y) \cdot \left[\underbrace{\frac{d^2\sigma}{dxdy}}_{:=C(x,y)} \bigotimes B(x, y) \right] \text{ (Assumption: } \varepsilon(x, y) = 1 \text{)}$$

- It is possible to separate two contributions by spatial Fourier transform \mathcal{F}^+ : $\hat{D} = \mathcal{F}^+ \left[C(x,y) \bigotimes B(x,y) \right] = \hat{C}(\theta_x, \theta_y) \cdot \hat{B}(\theta_x, \theta_y)$
- Extract smearing function from data: $\hat{B} = \frac{\hat{D}}{\hat{C} + \varepsilon} \cdot \frac{|\hat{C}|^2}{|\hat{C}|^2 + k \sum |\hat{C}|^2}$, where k and ε are the regularization coefficients (Wiener filtration) Theoretical Compton x-sec
- Perform the inverse Fourier transform: $B = \mathcal{F}^{-}[\hat{B}]$
- Make a fit to data using known smearing function: $D_L D_R = (C_L C_R) \bigotimes B$

Fit results

10.0 data_sum_py data_sum_px • 16 fit_sum_py fit_sum_px 7.5 14 5.0 12 2.5 y [mm] 10 0.0 8 -2.56 -5.0 4 -7.5 2 -10.0 0 0 5 10 -20 0 20 x [mm]

Vertical and horizontal projections for the data and fit distributions (Errors are too small to show)

Stepan Zakharov

Fit results: extracting polarization state

Scattered photons 2D differential coordinate distributions for the left and right optical polarization $\chi^2/ndf = 1.19$

Vertical and horizontal projections for the data and fit distributions

- $P = 0.56 \pm 0.08$ [e⁻polarization]
- $Q = -0.21 \pm 0.02$ [linear light]
- $V = 0.97 \pm 0.02$ [circular light]

Stepan Zakharov

Page 16 / 18

Measuring beam energy

- We performed \sim 50 beam energy measurements with the new Laser Polarimeter
- Each run takes about 40 min (Statistical constraint)
- \Rightarrow Statistical energy error is 0.027 MeV
 - $\delta E/E = 5.7 \cdot 10^{-6}$
 - $\delta P/P = 5\%$

Electron beam polarization state time dependence

- We are completing the Laser Polarimeter setup for the VEPP-4
- To perform absolute electron beam polarization measurement, a new effect extraction method was proposed:
 - \Downarrow Obtain 2d distributions for the scatted photons
 - \Downarrow Extract the beam smearing function
 - Make a fit to data using a theoretical x-sec and the smearing function
- Statistical error of the electron beam energy value is 0.027 MeV, that corresponds to $\delta E/E=5.7\cdot 10^{-6}$
- We know e^- beam polarization with 5% error and work on improvement of our method

Backup: Laser polarimeter optical elements

Stepan Zakharov

Backup: Compton x-sec for different e^- beam polarization

Stepan Zakharov

Backup: Compton x-sec for the elliptical optical beam

Differential Compton x-sec for th non-zero electron beam polarization and a circularly polarized optical beam $(P \neq 0, V = 1, Q = 0)$

Differential Compton x-sec for the linearly polarized optical beam (Q = 1)

Differential Compton x-sec for the elliptically polarized optical beam (P = 0.92, V = 0.97, Q = 0.2)