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Compton Polarimeter Overview
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Halls A and C have similar but not identical Compton polarimeters
e Both designed for measurement of longitudinal polarization

* Hall A Compton built as part of original Hall A beamline (1998 first use) by Saclay/JLab
* Hall C Compton built in 2010 by JLab/MIT/UVa/Manitoba/Winnipeg/William and Mary
* Dimensions:

 Common layout > 4-dipole chicane to deflect electrons to laser system and back to nominal beam path

e Hall C: Overall length: L=11 m. Vertical deflection: originally h=57 cm (6 GeV), now h=12 cm (11 GeV)
e Hall A: Overall length: L=15 m. Vertical deflection: originally h=30 cm (6 GeV), now h=21.5 cm (11 GeV)
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Compton Polarimeter Subsystems
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Laser — both Hall A and Hall C use Fabry-Perot cavities to store >1 kW of laser power
Hall A: Originally used 1064 nm narrow linewidth laser alone. Later upgraded to a frequency-doubled (532
nm) system = modest input power (up to 1 W), high Finesse cavity
Hall C: Started with 532 laser (Coherent Verdi) = higher input power (10 W), modest Finesse cavity
Photon detector

Hall A: started with multi-channel lead-tungstate detector. Now use GSO (low energy) or “single channe

lead-tungstate in integrating mode
Hall C: lead tungstate, integrating mode

Electron detector

Hall A: silicon strip, Hall C, diamond strip
Both will be upgrading detectors to larger area diamond strip
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Compton Operation Mode
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Photon detector rates

Laser locks and unlocks regularly to allow measurement of backgrounds
— Backgrounds highly dependent on beam quality
- Sometimes extensive tuning is required to achieve good backgrounds — dominant background from beam
interaction with apertures in beamline
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Hall A Laser System

Main components:

Narrow linewidth 1064 nm

seed laser

Fiber amplifier (>5 W)

PPLN doubling crystal

High gain Fabry-Perot cavity
Polarization
manipulation/monitoring optics

Properties:

1 W laser power from doubling
system

Mirror reflectivity > 99.98%
Cavity finesse >=13,000

Stored power 2-10 kW
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Hall C Laser System

Key differences with Hall A system:

* Higher power green laser 2 10 W (Coherent
VERDI)

* Large linewidth (1 MHz) means laser can’t be
used with narrow linewidth cavity

* Cavity mirrors = 99.5%

e Cavity gain = 200, stored power ~ 1.7 kW

Drawbacks:

 1.7-2 kW is the ultimate upper limit without
increasing laser power

e At 10 W, already ran into issues with distortion
of beam shape when used with optical
components

* Apparent thermal effects became significant
towards end of Q—Weak run — possible damage
to vacuum windows or mirrors
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Will replace Hall C system with one similar to Hall A = higher powers, better reliability
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Polarization Measurement and Cavity Birefringence

Both Hall A and C mitigate impact of birefringence due to vacuum entrance window (and other elements) by monitoring

light reflected back from cavity when unlocked

- Leverages optical reversibility theorems: J. Opt. Soc. Am. A/Vol. 10, No. 10/October 1993, JINST 5 (2010) PO6006
- Birefringence in cavity cannot be ignored — resulted in non-negligible effects in Hall A

Circular polarization at cavity entrance
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Photon Detectors

Hall A originally extracted polarization by fitting asymmetry vs. energy using lead-tungstate detector
- Carnegie-Mellon group suggested measured energy-weighted asymmetry — asymmetry integrated over helicity window

E"-E Same technique
E* 4+ E- used in Hall C

E* = LTjoEm“g(E)Ej—g(E)(li PPAEHE —> A, =

- No threshold, so analyzing power well understood

- Less sensitive to understanding detector resolution

- Understanding detector non-linearity over relevant range of
signal size most significant challenge = LED pulser system

Lead-tungstate — high energy

Linearity measurement GSO - low energy ’ ﬁon Lab



Hall C Compton Electron Detector

Diamond microstrips used to detect scattered electrons
= Four 21mm x 21mm planes each with 96 horizontal 200 um wide
micro-strips.

- Rough-tracking based/coincidence trigger suppresses backgrounds

—> Detector inside vacuum can — electronics outside = efficiency ok
(>80%), but some variation strip-to-strip
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Hall A Compton Electron Detector

Silicon strip electron detector worked well for most of 6 GeV = replaced around the same time as upgrade
of laser system

- Updated system did not perform well — excess noise required

high thresholds, resulting in low efficiency
—> Likely due to excess capacitance in signal path

—> In preparation for upcoming MOLLER experiment will be replaced

With diamond strip with ASIC on detector plane
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Hall A: silicon strip
- 4.6 cm vertical coverage
—> 192 strips, 240 um pitch
5 Jefferd
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Hall C Compton Systematic Uncertainties (electron detector)

Scale uncertainty = 0.42%

Point-to-point uncertainty =0.41%

Total systematic uncertainty =0.59%

Hall C Compton performance summarized in:

Narayan et al, Phys.Rev.X 6 (2016) 1, 011013

Photon detector had significantly larger
systematic uncertainties — difficult to
constrain non-linearity under load

Uncer- AP/P
Source tainty (%)
Laser polarization 0.18 % 0.18
37¢ Dipole field 0.0011 T 0.13
Beam energy 1 MeV 0.08
Detector Z position 1 mm 0.03
Trigger multiplicity 1-3 plane
Trigger clustering 1-8 strips 0.01
Detector tilt (X) 1° 0.03
Detector tilt (V) 1° 0.02
Detector tilt (Z) 1° 0.04
Strip eff. variation 0.0 - 100% 0.1
Detector Noise <20% of rate 0.1
Fringe Field 100% 0.05
Radiative corrections 20% 0.05
DAQ ineff. correction 40% 0.3
DAQ ineff. pt-to-pt @
Beam vert. angle variation 0.5 mrad
helicity correl. beam pos. 5 nm < 0.05
helicity correl. beam angle 3 nrad < 0.05
spin precession through chicane 20 mrad < 0.03
Total 0.59
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Hall C Compton Performance

Q-Weak Run 2 (2011-2012)
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Compton and Mgller results agree to ~ 0.7% = combined norm. unc. = 0.77%
Used weighted average of both polarimeters, polarization unc. for Q-Weak = 0.61%
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Polarimetry at Low and High Currents in Hall C
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Beam Polarization [pct]

Hall A Compton Polarimeter — Recent Results

CREX Experiment —2019-2020
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CREX Polarization Measurements (Compton & Moller)
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CREX Compton analysis: dP/P = 0.52% Photon detector only (electron detector not fully functional)
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CREX Compton Systematic Uncertainties

Photon detector for polarization measurements
— Electron detector installed, but used primarily for
tests and commissioning new VETROC-based DAQ

Photon detector measurements made using threshold-
less, energy-integrating technique

- LTJ- g(E)E—(E)(lir PP, A (E)LE

E"—-E"
E"+E"

AExp =

Results in reduced sensitivity to absolute detector response

Source = (%)
Collimator offset 0.20
Laser DOCP (0.45>
(Gain shift 0.15
Nonlinearity 0.02
Model 0.05
Beam energy 0.05
Statistics 0.02
Total 0.52
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Summary

« Hall Aand C have leveraged many years of polarization measurements to incrementally
Improve polarimeters to achieve high precision

* Moving towards more common systems (laser, electron detectors) to simplify
maintenance

« Strong User support and involvement throughout the program
* More details on laser, detectors, backgrounds in talks later this week
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