Compton Polarimetry at Jefferson Lab

Jefferson Lab Polarimetry Map

 $E_{beam} = 1-12 \text{ GeV}$ $I_{beam} \simeq 100 \text{ }\mu\text{A}$

P=85-90%

2

Compton Polarimeter Overview

Halls A and C have similar but not identical Compton polarimeters

- Both designed for measurement of **longitudinal** polarization
- Common layout \rightarrow 4-dipole chicane to deflect electrons to laser system and back to nominal beam path
- Hall A Compton built as part of original Hall A beamline (1998 first use) by Saclay/JLab
- Hall C Compton built in 2010 by JLab/MIT/UVa/Manitoba/Winnipeg/William and Mary
- Dimensions:
 - Hall C: Overall length: L=11 m. Vertical deflection: originally h=57 cm (6 GeV), now h=12 cm (11 GeV)
 - Hall A: Overall length: L=15 m. Vertical deflection: originally h=30 cm (6 GeV), now h=21.5 cm (11 GeV)

Compton Polarimeter Subsystems

- Laser both Hall A and Hall C use Fabry-Perot cavities to store >1 kW of laser power
 - Hall A: Originally used 1064 nm narrow linewidth laser alone. Later upgraded to a frequency-doubled (532 nm) system → modest input power (up to 1 W), high Finesse cavity
 - Hall C: Started with 532 laser (Coherent Verdi) → higher input power (10 W), modest Finesse cavity
- Photon detector
 - Hall A: started with multi-channel lead-tungstate detector. Now use GSO (low energy) or "single channel" lead-tungstate in integrating mode
 - Hall C: lead tungstate, integrating mode
- Electron detector
 - Hall A: silicon strip, Hall C, diamond strip
 - Both will be upgrading detectors to larger area diamond strip

Compton Operation Mode

Photon detector rates

Laser locks and unlocks regularly to allow measurement of backgrounds

- ightarrow Backgrounds highly dependent on beam quality
- → Sometimes extensive tuning is required to achieve good backgrounds *dominant background from beam interaction with apertures in beamline*

Hall A Laser System

Main components:

- Narrow linewidth 1064 nm seed laser
- Fiber amplifier (>5 W)
- PPLN doubling crystal
- High gain Fabry-Perot cavity
- Polarization manipulation/monitoring optics

Properties:

- 1 W laser power from doubling system
- Mirror reflectivity > 99.98%
- Cavity finesse >=13,000
- Stored power 2-10 kW

Hall C Laser System

Key differences with Hall A system:

- Higher power green laser → 10 W (Coherent VERDI)
- Large linewidth (1 MHz) means laser can't be used with narrow linewidth cavity
- Cavity mirrors = 99.5%
- Cavity gain = 200, stored power ~ 1.7 kW

Drawbacks:

- 1.7-2 kW is the ultimate upper limit without increasing laser power
- At 10 W, already ran into issues with distortion of beam shape when used with optical components
- Apparent thermal effects became significant towards end of Q–Weak run – possible damage to vacuum windows or mirrors

Will replace Hall C system with one similar to Hall A \rightarrow higher powers, better reliability

Polarization Measurement and Cavity Birefringence

Both Hall A and C mitigate impact of birefringence due to vacuum entrance window (and other elements) by monitoring light reflected back from cavity when unlocked

- → Leverages optical reversibility theorems: J. Opt. Soc. Am. A/Vol. 10, No. 10/October 1993, JINST 5 (2010) P06006
- → Birefringence in cavity cannot be ignored resulted in non-negligible effects in Hall A

Measurements of cavity birefringence

Photon Detectors

Hall A originally extracted polarization by fitting asymmetry vs. energy using lead-tungstate detector → Carnegie-Mellon group suggested measured energy-weighted asymmetry – asymmetry integrated over helicity window

$$E^{\pm} = LT \int_{0}^{E_{\text{max}}} \varepsilon(E) E \frac{d\sigma}{dE}(E) \left(1 \pm P_{e} P_{\gamma} A_{l}(E) \right) dE \longrightarrow A_{Exp} = \frac{E^{+} - E^{-}}{E^{+} + E^{-}}$$

Same technique used in Hall C

- \rightarrow No threshold, so analyzing power well understood
- \rightarrow Less sensitive to understanding detector resolution
- → Understanding detector non-linearity over relevant range of signal size most significant challenge → LED pulser system

Lead-tungstate – high energy

Linearity measurement

GSO - low energy

Hall C Compton Electron Detector

Diamond microstrips used to detect scattered electrons

- → Four 21mm x 21mm planes each with 96 horizontal 200 µm wide micro-strips.
- → Rough-tracking based/coincidence trigger suppresses backgrounds
- → Detector inside vacuum can electronics outside → efficiency ok (>80%), but some variation strip-to-strip

Plane 3

Plane 4

Plane 2

Plane 1

Silicon strip electron detector worked well for most of 6 GeV \rightarrow replaced around the same time as upgrade of laser system

→ Updated system did not perform well – excess noise required high thresholds, resulting in low efficiency

 \rightarrow Likely due to excess capacitance in signal path

→ In preparation for upcoming MOLLER experiment will be replaced With diamond strip with ASIC on detector plane

Hall A: silicon strip
 → 4.6 cm vertical coverage
 → 192 strips, 240 µm pitch
 ¹¹ Jefferson L

Hall C Compton Systematic Uncertainties (electron detector)

Scale uncertainty = 0.42%

Point-to-point uncertainty = 0.41%

Total systematic uncertainty = 0.59%

Hall C Compton performance summarized in:

Narayan et al, Phys. Rev. X 6 (2016) 1, 011013

Photon detector had significantly larger systematic uncertainties – difficult to constrain non-linearity under load

~	Uncer-	$\Delta P/P$
Source	tainty	(%)
Laser polarization	0.18~%	0.18
3^{rd} Dipole field	$0.0011 { m T}$	0.13
Beam energy	$1 { m MeV}$	0.08
Detector Z position	$1 \mathrm{mm}$	0.03
Trigger multiplicity	1-3 plane	0.19
Trigger clustering	$1-8 \ {\rm strips}$	0.01
Detector tilt (X)	1°	0.03
Detector tilt (Y)	1°	0.02
Detector tilt (Z)	1°	0.04
Strip eff. variation	0.0 - 100%	0.1
Detector Noise	$\leq 20\%$ of rate	0.1
Fringe Field	100%	0.05
Radiative corrections	20%	0.05
DAQ ineff. correction	40%	0.3
DAQ ineff. pt-to-pt		0.3
Beam vert. angle variation	$0.5 \mathrm{\ mrad}$	0.2
helicity correl. beam pos.	$5 \mathrm{nm}$	< 0.05
helicity correl. beam angle	$3 \mathrm{nrad}$	< 0.05
spin precession through chicane	20 mrad	< 0.03
Total		0.59
	•	12 12

Jefferson Lat

Hall C Compton Performance

Q-Weak Run 2 (2011-2012)

Compton and Møller results agree to ~ $0.7\% \rightarrow$ combined norm. unc. = 0.77%Used weighted average of both polarimeters, polarization unc. for Q-Weak = 0.61%

13

Polarimetry at Low and High Currents in Hall C

- Measurements with Møller and Compton at same current to check systematic → agree within uncertainties (<1% relative)
- Combination of low current (Møller + Compton) and high current (Compton) measurements limits current dependence to <1% over range of 175 μA

Magee et al, Phys.Lett.B 766 (2017) 339-344

Hall A Compton Polarimeter – Recent Results

CREX Experiment – 2019-2020

CREX Polarization Measurements (Compton & Moller)

CREX Compton analysis: dP/P = 0.52% Photon detector only (electron detector not fully functional)

Photon detector for polarization measurements
 → Electron detector installed, but used primarily for tests and commissioning new VETROC-based DAQ

Photon detector measurements made using thresholdless, energy-integrating technique

$$E^{\pm} = LT \int_{0}^{E_{\text{max}}} \varepsilon(E) E \frac{d\sigma}{dE} (E) \left(1 \pm P_{e} P_{\gamma} A_{l}(E)\right) dE$$
$$A_{Exp} = \frac{E^{+} - E^{-}}{E^{+} + E^{-}}$$

Results in reduced sensitivity to absolute detector response

Source	$\frac{dP}{P}(\%)$
Collimator offset	0.20
Laser DOCP	0.45
Gain shift	0.15
Nonlinearity	0.02
Model	0.05
Beam energy	0.05
Statistics	0.02
Total	0.52

Summary

- Hall A and C have leveraged many years of polarization measurements to incrementally improve polarimeters to achieve high precision
- Moving towards more common systems (laser, electron detectors) to simplify maintenance
- Strong User support and involvement throughout the program
- More details on laser, detectors, backgrounds in talks later this week

