DISPERSION AT THE IPS: WHAT TO EXPECT, WAYS TO CORRECT

FCC

H. Burkhardt, T. Charles, M. Hofer, K. Oide, L. van Riesen-Haupt, R. Tomás, F. Zimmermann

Effect of dispersion at the IP

- Dispersion at the IP changes collision energy spread and, together with orbit offset u, leads to a shift of E_{com}
 - Studied in LEP where vertical bumps were used to avoid parasitic collisions, leading to vertical dispersion at IP [<u>Ref</u>]
 - For Gaussian beams with the same $\sigma_u = \sqrt{\beta_u^* \varepsilon_u}$, $\sigma_{u,Bx} = \sqrt{\sigma_u^2 + (D_{u,Bx} \sigma_{\epsilon})^2}$ shift of centre-of-mass energy ΔE_{com} and $\sigma_{E_{com}}^2$ are:

$$\Delta E_{com} = -2u \frac{\sigma_{E}^{2}(D_{u,B1} - D_{u,B2})}{E_{0}(\sigma_{u,B1}^{2} + \sigma_{u,B2}^{2})} \qquad \sigma_{E_{com}}^{2} = \sigma_{E}^{2} \left[\frac{\sigma_{e}^{2}(D_{u,B1} + D_{u,B2})^{2} + 4\sigma_{u}^{2}}{\sigma_{u,B1}^{2} + \sigma_{u,B2}^{2}} \right]$$

$$D_{u,B1} \neq D_{u,B2}$$

Dispersion at the IP after correction

 Optics correction studies performed by T. Charles (see presentation next week)

) FCC

- Studies performed with 4 IP lattice and $t\bar{t}$ operation, applying a global correction scheme
- In *Z* operation, smaller β^* and higher D_x in the arcs, increasing sensibility to errors

T. Charles

Impact on ΔE_{com}

- Assuming $\Delta E_{com} < 100 \ keV$ together with design parameters for Z and $\Delta D_y = 2.8 \ \mu m$, we get $\Delta y < 0.5 \ nm$ [cf. $\Delta y < 0.1 \ nm$ and $\Delta D_y = 10 \ \mu m$ in arXiv:1909.12245]
 - Relaxed in horizontal plane, $\Delta D_x = 4 mm$ leads to $\Delta x < 20 nm$ [cf. $\Delta x < 300 nm$ and $\Delta D_x = 0.2 mm$ in arXiv:1909.12245]

T. Charles

Impact on $\sigma_{E_{com}}$

FCC

- Energy spread $\sigma_{E_{com}}$ affected by sign between beams
 - For $(D_{u,B1} = D_{u,B2}) \rightarrow \sigma_{E_{com}} = \sqrt{2}\sigma_E$
 - In case $(D_u = D_{u,B1} = -D_{u,B2}) \rightarrow \sigma_{E_{com}} = \sqrt{2}\sigma_E \left(1 + \left(\frac{D_u \sigma_e}{\sigma_u}\right)^2\right)^2$
 - In vertical plane, difference between $(D_{y,B1} = D_{y,B2})$ and $(D_y = D_{y,B1} = -D_{y,B2})$ negligible and $\sigma_{E_{com}} = 85 MeV$
 - In horizontal plane, $\sigma_{E_{com}} = 85MeV (D_{x,B1} = D_{x,B2})$ to $\sigma_{E_{com}} = 80MeV (D_{x,B1} = -D_{x,B2})$

T. Charles

Control of Dispersion at the IP

) FCC

- Perform Vernier scans for different RF frequencies to obtain ΔD_{γ}
 - Measurement of luminosity for different separations *u* of colliding bunches
 - Chromatic optics $(\beta_u^*(\delta), D_u^*(\delta), ..)$ at IP may result in slight bias
 - Impact of misalignments to be studied

- Preceded by rough tuning via fast measurements with pilots and using IP BPMs (?)
 - Assuming equal distance between BPM and IP on either side and drift space between BPMs: $D_u^{ip} = 0.5 \left(D_u^{bpm1} + D_u^{bpm2} \right)$
 - Complication due to Solenoid (see later)

Horizontal dispersion knob

- For control of horizontal dispersion (in order of ~mm) while keeping same linear optics at IP, knob constructed using final focus quadrupoles and quadrupoles next to crab sextupole
 - Some (unavoidable?) issues:

- Phase constraints µ_{ip→crab sextupole} broken and slight difference in linear optics between crab sextupole pair affecting cancelation of geometric sextupole terms
- Impact on DA to be studied
- No knob found with less quadrupoles

Vertical dispersion knob

- To induce vertical dispersion at the IP, skew quadrupoles in final focus and next to crab sextupoles and arc sextupoles installed
 - For D_y of $\sim \mu m$, no perturbation of linear optics and linear coupling induced at IP
 - Impact on chromatic properties to be checked

Tilted Solenoid

- So far, drift space around IP assumed
 - Tilted solenoid affects orbit and introduces coupling
- Field map implemented by H. Burkhardt in MAD-X as thin solenoid slices and orbit correctors [Ref]
 - Solenoid generates $D_{x,y} \cong 3 \ \mu m$ at IP, even in the ideal case
 - In test case, residual $D_x = 1.5 mm$ at solenoid entrance adds $\Delta D_y = 0.2 \mu m$ at IP

Conclusions

- Dispersion at the IP affects energy spread and, together with offset between bunches, the centre of mass energy
 - Latest tuning studies yield lower vertical dispersion at the IP compared to last report, without dedicated local correction
 - Knobs for control of dispersion at IP constructed, adverse side effects to be studied
 - Tilted Solenoid creates additional dispersion, model (and uncertainties) should be included in correction procedure
 - Next steps: add prelim. Knobs to IP correction suite and perform correction in lattices with errors

Thanks for your attention!