Luminosity Spectrum Reconstruction with Bhabha Events

André Sailer

CERN-EP-SFT

FCC Polarisation Workshop September 21, 2022

Table of Contents

- Beamstrahlung and the Luminosity Spectrum
 - The Luminosity Spectrum: Definitions
 - What is the Goal of this Reconstruction?
 - Bhabha Scattering
 - Methods for the Reconstruction of the Luminosity Spectrum
 - The Reweighting Technique
- The Model: Parametrisation of the Luminosity Spectrum
 - Beta-Distributions
 - Beam-Energy Spread
 - Beamstrahlung
 - The Full Model
 - Model Validation
- Adding Bhabha Cross-Section, ISR, Detector Effects
 - Cross-Section
 - Detector Effects
 - Results
- Conclusions

Section 1:

Beamstrahlung and the Luminosity Spectrum

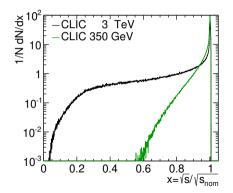
- The Luminosity Spectrum: Definitions
- What is the Goal of this Reconstruction?
- Bhabha Scattering
- Methods for the Reconstruction of the Luminosity Spectrum
- The Reweighting Technique

Reminder: Beam–Beam Interactions

- Large luminosities require high bunch charge and small beams $L \propto \frac{N^2}{\sigma_v \sigma_v}$
- Electromagnetic fields during bunch crossing $B \propto \frac{\gamma N}{\sigma_z(\sigma_x + \sigma_y)}$ cause deflection of beam particles
- Deflection of particles by the other bunch leads to synchrotron radiation (Beamstrahlung)



- Energy loss leads to luminosity spectrum
 - For 3 TeV CLIC, still 30% of luminosity above 99% of nominal energy

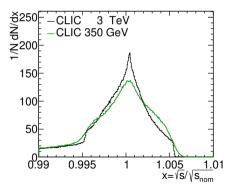


Reminder: Beam–Beam Interactions

- ► Large luminosities require high bunch charge and small beams $L \propto \frac{N^2}{\sigma_x \sigma_y}$
- Electromagnetic fields during bunch crossing $B \propto \frac{\gamma N}{\sigma_z(\sigma_x + \sigma_y)}$ cause deflection of beam particles
- Deflection of particles by the other bunch leads to synchrotron radiation (Beamstrahlung)



- Energy loss leads to luminosity spectrum
 - For 3 TeV CLIC, still 30% of luminosity above 99% of nominal energy

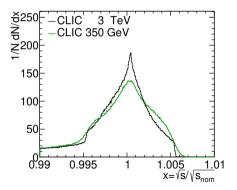


Reminder: Beam–Beam Interactions

- ► Large luminosities require high bunch charge and small beams $L \propto \frac{N^2}{\sigma_v \sigma_v}$
- Electromagnetic fields during bunch crossing $B \propto \frac{\gamma N}{\sigma_z(\sigma_x + \sigma_y)}$ cause deflection of beam particles
- Deflection of particles by the other bunch leads to synchrotron radiation (Beamstrahlung)



- Energy loss leads to luminosity spectrum
 - For 3 TeV CLIC, still 30% of luminosity above 99% of nominal energy
- How well can the luminosity spectrum be reconstructed?



Measuring the Luminosity Spectrum

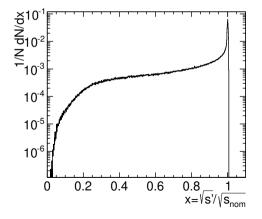
Beam-beam effects (and thus the luminosity spectrum) are highly dependent on bunch geometries

- Cannot measure bunch geometry to sufficient detail
- Bunch geometry changes over time
- If geometry is not known, simulation is not possible
- Downstream measurement of Beamstrahlung photons give no direct access to luminosity spectrum

Therefore: Have to measure luminosity spectrum at the IP with the detector

The Luminosity Spectrum: Definitions

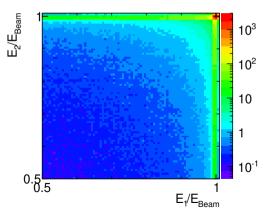
CLIC $\sqrt{s_{\text{nom}}} = 3$ TeV luminosity spectrum as simulated by GUINEAPIG



- Given two particles with the energies E_1 and E_2 colliding head-on, the centre-of-mass energy is $\sqrt{s'} = 2\sqrt{E_1E_2} = 2E_{\text{Beam}}\sqrt{x_1x_2}$ $(x_{1,2} = E_{1,2}/E_{\text{Beam}})$
- ► The luminosity spectrum is the probability distribution of centre-of-mass energies L(√s)

The Luminosity Spectrum: Definitions

CLIC $\sqrt{s_{\text{nom}}} = 3$ TeV luminosity spectrum as simulated by GUINEAPIG



- Given two particles with the energies E_1 and E_2 colliding head-on, the centre-of-mass energy is $\sqrt{s'} = 2\sqrt{E_1E_2} = 2E_{\text{Beam}}\sqrt{x_1x_2}$ $(x_{1,2} = E_{1,2}/E_{\text{Beam}})$
- ► The luminosity spectrum is the probability distribution of centre-of-mass energies L(√s)
- ► Better: The luminosity spectrum is the probability distribution of the energies of the particle pair ℒ(E₁, E₂)

What is the Goal of this Reconstruction?

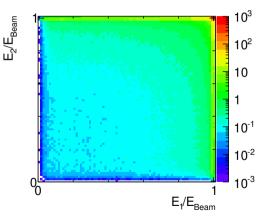
Goal: The distribution of the pairs of particle energies prior to the 'hard interaction'

ECCEpol. Sep 21, 2022

€ FCC

- Only reconstructing the centre-of-mass energy ignores the longitudinal boost of the system
- Strong correlation between the two particle energies
- Account for (potentially) asymmetric beams

Particle Energy Spectrum from GUINEAPIG

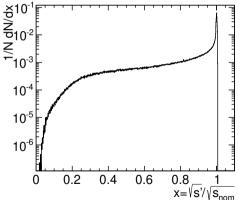


What is the Goal of this Reconstruction?

- Goal: The distribution of the pairs of particle energies prior to the 'hard interaction'
 - Only reconstructing the centre-of-mass energy ignores the longitudinal boost of the system
 - Strong correlation between the two particle energies
 - Account for (potentially) asymmetric beams
- ► Mostly show the centre-of-mass system (c.m.s.) luminosity spectrum L(√s) because it is easier to visualise and interpret

$$\mathscr{L}(\sqrt{s}) = \int \mathrm{d}x_1 \int \mathrm{d}x_2 \mathscr{L}(x_1, x_2) \,\delta(\frac{\sqrt{s}}{\sqrt{s_{\mathrm{nom}}}} - \sqrt{x_1 x_2})$$

Luminosity Spectrum from GUINEAPIG

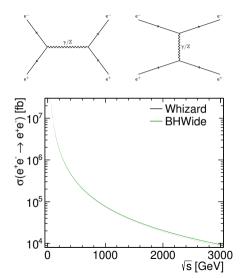


Bhabha Scattering

- ► Bhabha scattering $e^+e^- \rightarrow e^+e^-(\gamma)$ has:
 - Large cross-section
 - Well known cross-section (calculable to high precision)
- Cross-section: 10 000 fb at 3 TeV (with polar angle of electrons above 7°)
 - Proportional to $1/(s \sin^3 \theta)$
- Can reconstruct relative centre-of-mass energy from polar angle difference (acollinearity)

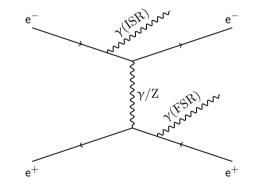
 $\frac{\sqrt{s_{\rm acol}'}}{\sqrt{s_{\rm nom}}} = \sqrt{\frac{\sin(\theta_1) + \sin(\theta_2) + \sin(\theta_1 + \theta_2)}{\sin(\theta_1) + \sin(\theta_2) - \sin(\theta_1 + \theta_2)}}$

 Also measure the energy of final state electron and positron



What Distribution is Measured in the Detector?

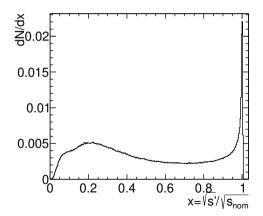
- ► The detector measure the final state electron and positron affected by the cross-section (initial state radiation (ISR), final state radiation (FSR), $\sqrt{s'}$ dependence)
- There is no way, for an individual event, to know if the energy was lost from initial state radiation or Beamstrahlung
- The measured values are also affected by the resolution of the respective sub-detector



What Distribution is Measured in the Detector?

Distributions after Bhabha scattering (+ISR) and cross-section (without detector resolutions)

- ► The detector measure the final state electron and positron affected by the cross-section (initial state radiation (ISR), final state radiation (FSR), √s' dependence)
- There is no way, for an individual event, to know if the energy was lost from initial state radiation or Beamstrahlung
- The measured values are also affected by the resolution of the respective sub-detector



▶ ...?

(FCC

10/34

How to Extract the Luminosity Spectrum (\mathscr{L}) from Measurements?

With the distribution $f(E_1, E_2)$ of a vector of observables

 $f(E_1, E_2) \approx \sigma(E_1, E_2) \times \mathscr{L}(E_1, E_2) \otimes \mathsf{ISR}(E_1, E_2) \otimes \mathsf{FSR}(E_1, E_2) \otimes \mathsf{D}(E_1)\mathsf{D}(E_2)$

connected to the luminosity spectrum and measurable in the detector. One can then do either:

- De-convolute the measured (2D) spectrum to remove the initial state radiation energy loss, and detector resolutions, un-weight cross-section dependence
- Model the measured spectrum including cross-section, initial state radiation, and luminosity spectrum
 - Create a 2D function for the complete model and fit the measured spectrum to extract the luminosity spectrum
 - Let Bhabha generator take care of cross-section and initial state radiation, do GEANT4 simulation, and only model the luminosity spectrum
 - Do a template fit (normal models have 1 or 2 free parameters (e.g., mass and width), here one would need to have templates in a ≈ 25D phase space)
 - Use a reweighting technique for *efficient* fitting

▶ ...?

(FCC

10/34

How to Extract the Luminosity Spectrum (\mathscr{L}) from Measurements?

With the distribution $f(E_1, E_2)$ of a vector of observables

 $f(E_1, E_2) \approx \sigma(E_1, E_2) \times \mathscr{L}(E_1, E_2) \otimes \mathsf{ISR}(E_1, E_2) \otimes \mathsf{FSR}(E_1, E_2) \otimes \mathsf{D}(E_1)\mathsf{D}(E_2)$

connected to the luminosity spectrum and measurable in the detector. One can then do either:

- De-convolute the measured (2D) spectrum to remove the initial state radiation energy loss, and detector resolutions, un-weight cross-section dependence
- Model the measured spectrum including cross-section, initial state radiation, and luminosity spectrum
 - Create a 2D function for the complete model and fit the measured spectrum to extract the luminosity spectrum
 - Let Bhabha generator take care of cross-section and initial state radiation, do GEANT4 simulation, and only model the luminosity spectrum
 - Do a template fit (normal models have 1 or 2 free parameters (e.g., mass and width), here one would need to have templates in a ≈ 25D phase space)
 - Use a reweighting technique for *efficient* fitting

○FCC

Reweighting Fit in Words

Reweighting technique uses χ^2 -fit of two histogram with a distribution like

 $f(E_1, E_2) \approx \sigma(E_1, E_2) \times \mathscr{L}(E_1, E_2) \otimes \mathsf{ISR}(E_1, E_2) \otimes \mathsf{FSR}(E_1, E_2) \otimes \mathsf{D}(E_1)\mathsf{D}(E_2)$

- Data histogram: measured in detector (simulated by GUINEAPIG) (also apply Bhabha-scattering and detector simulation)
- MC histogram: Luminosity spectrum according to a parametrisation
 - Apply Bhabha scattering/ISR/Detector resolutions on event-by-event basis via MC Generator and detector simulation
 - Remember initial probability based on luminosity spectrum of each event $\mathscr{L}(x_1^i, x_2^i; [p]_0)$
 - Vary all event probabilities (via model parameters $[p]_N$) until minimum χ^2 is found

event weight:
$$w^{i} = \frac{\mathscr{L}(x_{1}^{i}, x_{2}^{i}; [p]_{N})}{\mathscr{L}(x_{1}^{i}, x_{2}^{i}; [p]_{0})}$$

Advantage

Only have to do (very time consuming) Bhabha-scattering and detector simulation once

O FCC

Section 2:

The Model: Parametrisation of the Luminosity Spectrum

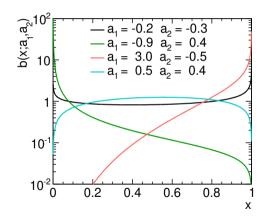
- Beta-Distributions
- Beam-Energy Spread
- Beamstrahlung
- The Full Model
- Model Validation

Beta-Distributions

 For the model of the luminosity spectrum mostly using Beta-Distributions

 $b(x) = \frac{1}{N} x^{a_1} (1-x)^{a_2}$

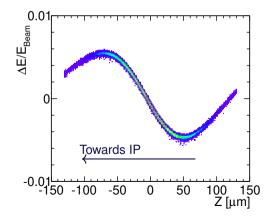
- with different parameter bounds
- ▶ Range: 0 < *x* < 1
- Beta-Distribution can represent wide variety of shapes
- Two free parameters: a_1 and a_2 , Normalisation N



Beam-Energy Spread I

Particle energy vs. longitudinal position from the accelerator simulation (3 TeV CLIC)

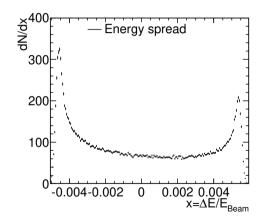
- Energy distribution in the bunch mostly due to intra-bunch wakefields and RF phase offset in main Linac
- Front of bunch gains more energy, because wakefields reduce effective gradient for the tail



O FCC

Beam-Energy Spread II

- Beam-Energy spread shows two peaks
- Mean around the nominal beam-energy



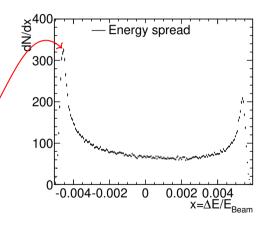
Beam-Energy Spread II

Beam-Energy spread shows two peaks

ECCEpol. Sep 21, 2022

O FCC

- Mean around the nominal beam-energy
- Lower energy peak is *back* of the bunch



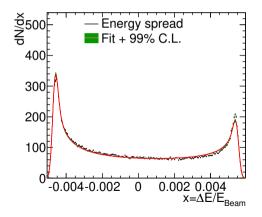
Beam-Energy Spread Function

 Beam-Energy Spread: Beta-distribution convoluted with Gauss

$$\mathsf{BES}(x) = \int_{x_{\min}}^{x_{\max}} b(\tau) \mathsf{Gauss}(x-\tau) \mathrm{d}\tau$$

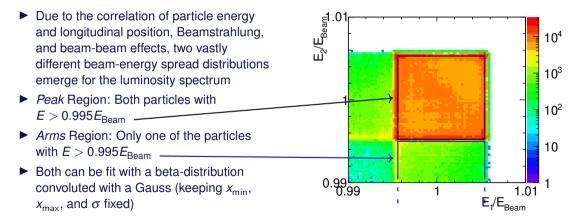
- 5 parameters, including min. and max. of beta-distribution range
- $\chi^2/ndf = 764/195$
- Tried many other functions (Cosh, Polynomials), none of them work as well with a limited number of parameters

Particle energy distribution from accelerator simulation



Luminosity-weighted Beam-Energy Spread

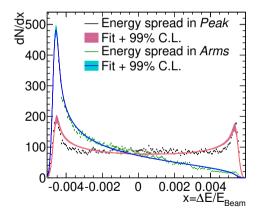
Peak of the luminosity spectrum



Luminosity-weighted Beam-Energy Spread

- Due to the correlation of particle energy and longitudinal position, Beamstrahlung, and beam-beam effects, two vastly different beam-energy spread distributions emerge for the luminosity spectrum
- Peak Region: Both particles with *E* > 0.995*E*_{Beam}
- Arms Region: Only one of the particles with E > 0.995E_{Beam}
- Both can be fit with a beta-distribution convoluted with a Gauss (keeping x_{min}, x_{max}, and σ fixed)

Particle energy distribution from the GUINEAPIG simulation 3 TeV

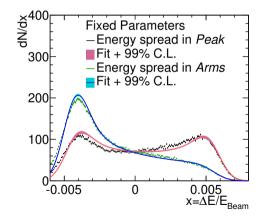


17/34

Luminosity-weighted Beam-Energy Spread

- Due to the correlation of particle energy and longitudinal position, Beamstrahlung, and beam-beam effects, two vastly different beam-energy spread distributions emerge for the luminosity spectrum
- Peak Region: Both particles with *E* > 0.995*E*_{Beam}
- Arms Region: Only one of the particles with E > 0.995E_{Beam}
- Both can be fit with a beta-distribution convoluted with a Gauss (keeping x_{min}, x_{max}, and σ fixed)

Particle energy distribution from the GUINEAPIG simulation 350 GeV



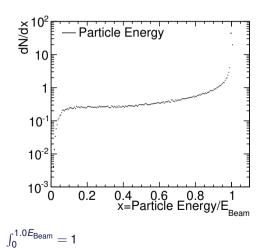
Beamstrahlung

- Second contribution to luminosity spectrum is energy loss due to Beamstrahlung
- Potentially large loss of energy for some particles

Fitting the particle Energy Spectrum

ECCEpol. Sep 21, 2022

- Upper bound of 0.995*E*_{Beam}, because of impact of beam-energy spread (Particle energy is convolution of Beamstrahlung and beam-energy spread effect)
- Single Beta-Distribution not enough to describe full range of particle energies
- Keep small number of parameters: Limit model to 0.5E_{Beam} and a single beta-distribution, but could extend in the future



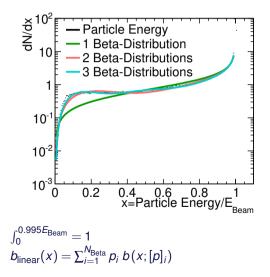
FCCEpol, Sep 21, 2022

Beamstrahlung

- Second contribution to luminosity spectrum is energy loss due to Beamstrahlung
- Potentially large loss of energy for some particles

Fitting the particle Energy Spectrum

- Upper bound of 0.995E_{Beam}, because of impact of beam-energy spread (Particle energy is convolution of Beamstrahlung and beam-energy spread effect)
- Single Beta-Distribution not enough to describe full range of particle energies
- Keep small number of parameters: Limit model to 0.5E_{Beam} and a single beta-distribution, but could extend in the future



FCCEpol, Sep 21, 2022

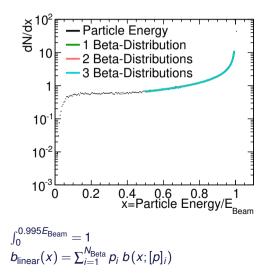
○ FCC

Beamstrahlung

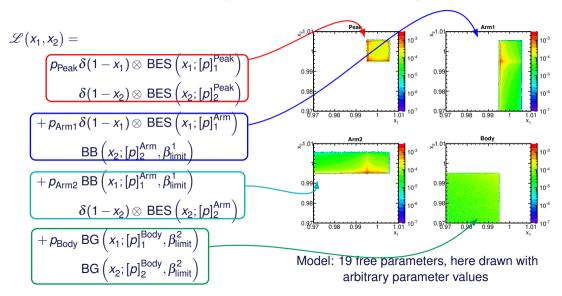
- Second contribution to luminosity spectrum is energy loss due to Beamstrahlung
- Potentially large loss of energy for some particles

Fitting the particle Energy Spectrum

- Upper bound of 0.995*E*_{Beam}, because of impact of beam-energy spread (Particle energy is convolution of Beamstrahlung and beam-energy spread effect)
- Single Beta-Distribution not enough to describe full range of particle energies
- Keep small number of parameters: Limit model to 0.5E_{Beam} and a single beta-distribution, but could extend in the future

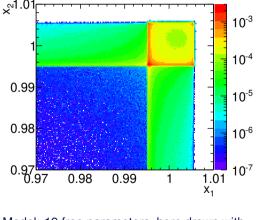


The Model: Putting the Individual Parts Together



The Model: Putting the Individual Parts Together

 $\mathscr{L}(x_1, x_2) =$ $p_{\mathsf{Peak}}\delta(1-x_1)\otimes \mathsf{BES}\left(x_1;[p]_1^{\mathsf{Peak}}\right)$ $\delta(1-x_2)\otimes \mathsf{BES}\left(x_2;[p]_2^{\mathsf{Peak}}\right)$ $+p_{\text{Arm1}}\delta(1-x_1)\otimes \text{BES}\left(x_1;[p]_1^{\text{Arm}}\right)$ $BB(x_2; [p]_2^{Arm}, \beta_{limit}^1)$ $+p_{\text{Arm2}} \text{BB}\left(x_1; [p]_1^{\text{Arm}}, \beta_{\text{limit}}^1\right)$ $\delta(1-x_2) \otimes \mathsf{BES}\left(x_2; [p]_2^{\mathsf{Arm}}\right)$ $+ p_{\text{Body}} \operatorname{BG}\left(x_1; [p]_1^{\text{Body}}, \beta_{\text{limit}}^2\right)$ $BG(x_2; [p]_2^{Body}, \beta_{limit}^2)$



Model: 19 free parameters, here drawn with arbitrary parameter values

The Model, continued

With

C FCC

$$egin{aligned} \mathsf{BES}(x) &= \int_{x_{\min}}^{x_{\max}} b(\tau) \mathsf{Gauss}(x- au) \mathsf{d} au \ \mathsf{BB}(x) &= (b \otimes \mathsf{BES})(x) \ \mathsf{BG}(x) &= (b \otimes g)(x) \end{aligned}$$

GUINEAPIG

21/34

Model vs. GUINEAPIG

Model



Arbitrary parameter values for the Model

22/34

Reweighting Fit Details

Do not have to calculate any (numerical) convolutions:

The distribution of a random variate (x_h) , which is based on the convolution of two probability density functions (PDFs) is equal to the distribution of the sum of the individual random variates $(x_f \text{ and } x_q)$.

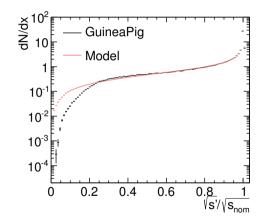
$$h(x) \equiv (f \otimes g)(x) \to x_h = x_f + x_g$$

Then the new weights can be calculated from the products of the individual PDFs

$$w^{i} = \frac{p_{\text{region}}^{N} b\left(x_{\text{Strahlung}}^{i,1}, [p]_{N}\right) b\left(x_{\text{Spread}}^{i,1}, [p]_{N}\right) g\left(x_{\text{G}}^{i,1}, [p]_{N}\right) b\left(x_{\text{Strahlung}}^{i,2}, [p]_{N}\right) b\left(x_{\text{Spread}}^{i,2}, [p]_{N}\right) g\left(x_{\text{G}}^{i,2}, [p]_{N}\right)}{p_{\text{region}}^{0} b\left(x_{\text{Strahlung}}^{i,1}, [p]_{0}\right) b\left(x_{\text{Spread}}^{i,1}, [p]_{0}\right) g\left(x_{\text{G}}^{i,1}, [p]_{0}\right) b\left(x_{\text{Strahlung}}^{i,2}, [p]_{0}\right) b\left(x_{\text{Spread}}^{i,2}, [p]_{0}\right) g\left(x_{\text{G}}^{i,2}, [p]_{0}\right)}$$

Model Validation

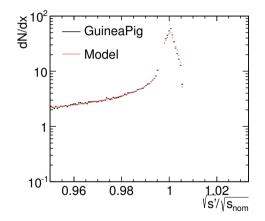
- Fit the 2D distribution of *Initial Particle* Energies
- 3 million GP events and 10 million according to the model
- No cross-section, initial state radiation, or detector effects
- Spectrum described within 5% down to $0.6\sqrt{s_{nom}}$
- Difference in the width of the peak, but averages out
- Some problem with the width of the peak
 - Only statistical errors from GUINEAPIG sample (1M events)
 - Error due to parameters smaller



Results for 150 \times 150 (E_1, E_2) bins and cut \sqrt{s} > 1.5 TeV

Model Validation

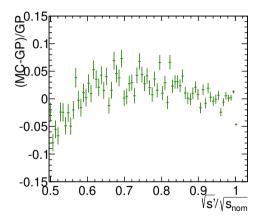
- Fit the 2D distribution of *Initial Particle* Energies
- 3 million GP events and 10 million according to the model
- No cross-section, initial state radiation, or detector effects
- Spectrum described within 5% down to $0.6\sqrt{s_{\rm nom}}$
- Difference in the width of the peak, but averages out
- Some problem with the width of the peak
 - Only statistical errors from GUINEAPIG sample (1M events)
 - Error due to parameters smaller



Results for 150 \times 150 (E_1,E_2) bins and cut \sqrt{s} > 1.5 TeV

Model Validation

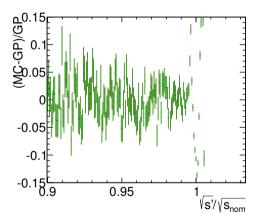
- Fit the 2D distribution of *Initial Particle* Energies
- 3 million GP events and 10 million according to the model
- No cross-section, initial state radiation, or detector effects
- Spectrum described within 5% down to $0.6\sqrt{s_{\rm nom}}$
- Difference in the width of the peak, but averages out
- Some problem with the width of the peak
 - Only statistical errors from GUINEAPIG sample (1M events)
 - Error due to parameters smaller



Results for 150 \times 150 $(E_{\rm 1},E_{\rm 2})$ bins and cut \sqrt{s} > 1.5 TeV

Model Validation

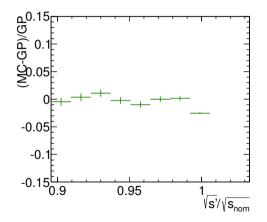
- Fit the 2D distribution of *Initial Particle* Energies
- 3 million GP events and 10 million according to the model
- No cross-section, initial state radiation, or detector effects
- Spectrum described within 5% down to $0.6\sqrt{s_{\rm nom}}$
- Difference in the width of the peak, but averages out
- Some problem with the width of the peak
 - Only statistical errors from GUINEAPIG sample (1M events)
 - Error due to parameters smaller



Results for 150 \times 150 (E_1,E_2) bins and cut \sqrt{s} > 1.5 TeV

Model Validation

- Fit the 2D distribution of *Initial Particle* Energies
- 3 million GP events and 10 million according to the model
- No cross-section, initial state radiation, or detector effects
- Spectrum described within 5% down to $0.6\sqrt{s_{nom}}$
- Difference in the width of the peak, but averages out
- Some problem with the width of the peak
 - Only statistical errors from GUINEAPIG sample (1M events)
 - Error due to parameters smaller



Results for 150 \times 150 (E_1,E_2) bins and cut $\sqrt{s}' >$ 1.5 TeV

O FCC

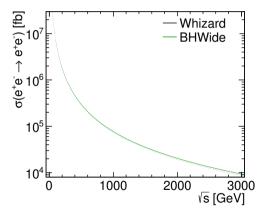
Section 3:

Adding Bhabha Cross-Section, ISR, Detector Effects

- Cross-Section
- Detector Effects
- Results

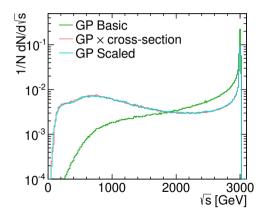
Luminosity Spectrum with Cross-Section

- Bhabha cross-section proportional to 1/s
- ► Cross-section calculated by WHIZARD and BHWIDE $7^{\circ} < \theta_{e^{\pm}} < 173^{\circ}$, without luminosity spectrum
- Need Luminosity Spectrum scaled according to cross-section
- Feed these energy pairs to BHWIDE for ISR/FSR and Bhabha-scattering



Luminosity Spectrum with Cross-Section

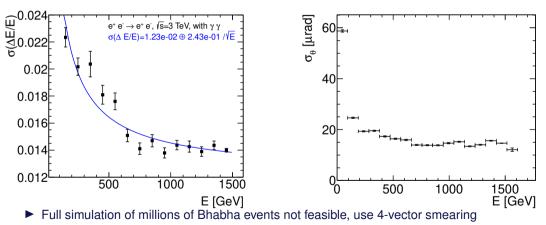
- Bhabha cross-section proportional to 1/s
- ► Cross-section calculated by WHIZARD and BHWIDE $7^{\circ} < \theta_{e^{\pm}} < 173^{\circ}$, without luminosity spectrum
- Need Luminosity Spectrum scaled according to cross-section
- Feed these energy pairs to BHWIDE for ISR/FSR and Bhabha-scattering



Angular Resolution ($e^{\pm}, \theta > 7^{\circ}$)

Detector Effects

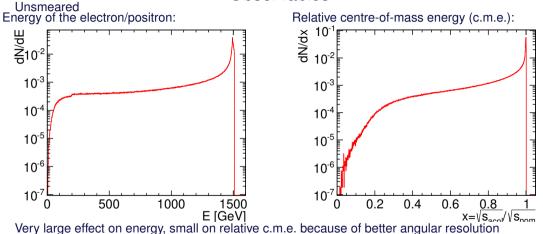
Particle Energy



► Detector resolutions obtained with full simulation/reconstruction with $\gamma\gamma \rightarrow$ hadron background overlay thanks to J.J. Blaising

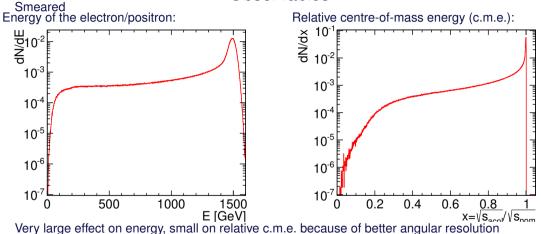
O FCC

Observables



$$\frac{\sqrt{s_{\text{acol}}}}{\sqrt{s_{\text{nom}}}} = \sqrt{\frac{\sin(\theta_1) + \sin(\theta_2) + \sin(\theta_1 + \theta_2)}{\sin(\theta_1) + \sin(\theta_2) - \sin(\theta_1 + \theta_2)}},$$

Observables

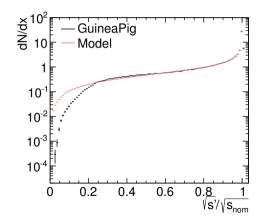


$$\frac{\sqrt{s'_{\text{acol}}}}{\sqrt{s_{\text{nom}}}} = \sqrt{\frac{\sin(\theta_1) + \sin(\theta_2) + \sin(\theta_1 + \theta_2)}{\sin(\theta_1) + \sin(\theta_2) - \sin(\theta_1 + \theta_2)}},$$

ECCEpol. Sep 21, 2022

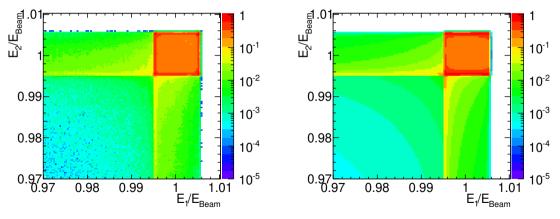
Final Fit: All Effects

- Includes cross-section scaling, ISR, FSR, detector resolutions
- ▶ Binning $60 \times 30 \times 30$ (Rel. c.m.s., E_1 , E_2)
- 2 million GP (current number of available events, approx. 400fb⁻¹), 10 million model
- ► Cut on: \sqrt{s} > 1.5 TeV, E_1 > 150 GeV, E_2 > 150 GeV



Reconstructed 2D Spectrum

GUINEAPIG

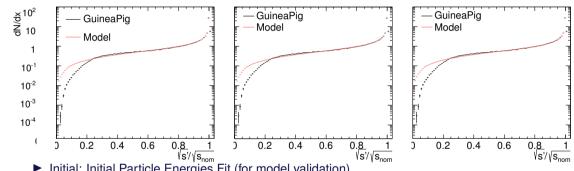


Fit with all effects $60 \times 30 \times 30$ bins

Comparison: Initial vs. Final

Initial

ECCEpol. Sep 21, 2022



- Initial: Initial Particle Energies Fit (for model validation)
- No Smearing: Bhabha observables and cross-section, no detector resolutions
- Final: Bhabha observables and cross-section, including detector resolutions
- N.B.: The GUINEAPIG sample for all these plots is the same.
- The differences between the GUINEAPIG and the model spectra are very similar for all stages of the reconstruction

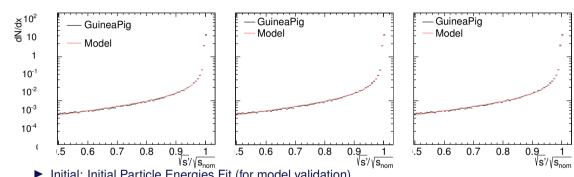
∩ FCC

No Smearing

Comparison: Initial vs. Final

Initial

ECCEpol. Sep 21, 2022



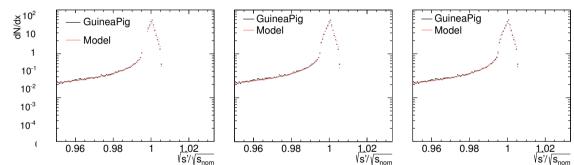
- Initial: Initial Particle Energies Fit (for model validation)
- No Smearing: Bhabha observables and cross-section, no detector resolutions
- Final: Bhabha observables and cross-section, including detector resolutions
- N.B.: The GUINEAPIG sample for all these plots is the same.
- The differences between the GUINEAPIG and the model spectra are very similar for all stages of the reconstruction

Final

∩ FCC

No Smearing

Comparison: Initial vs. Final



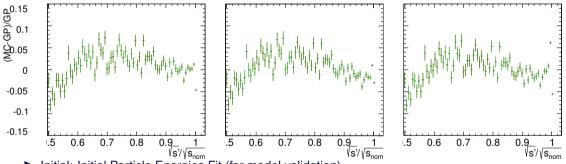
- Initial: Initial Particle Energies Fit (for model validation)
- No Smearing: Bhabha observables and cross-section, no detector resolutions
- Final: Bhabha observables and cross-section, including detector resolutions
- ► N.B.: The GUINEAPIG sample for all these plots is the same.
- The differences between the GUINEAPIG and the model spectra are very similar for all stages of the reconstruction

Final

Comparison: Initial vs. Final

Initial

No Smearing



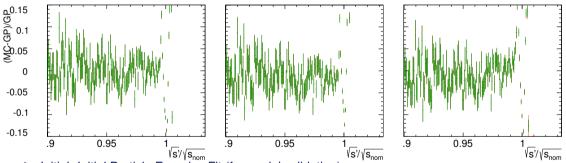
- Initial: Initial Particle Energies Fit (for model validation)
- No Smearing: Bhabha observables and cross-section, no detector resolutions
- Final: Bhabha observables and cross-section, including detector resolutions
- ► N.B.: The GUINEAPIG sample for all these plots is the same.
- The differences between the GUINEAPIG and the model spectra are very similar for all stages of the reconstruction

∩ FCC

Comparison: Initial vs. Final

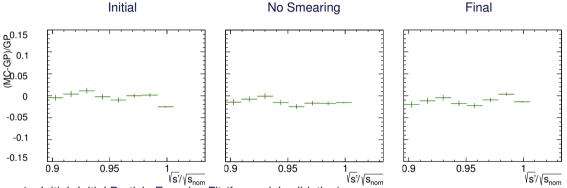
Initial

No Smearing



- Initial: Initial Particle Energies Fit (for model validation)
- No Smearing: Bhabha observables and cross-section, no detector resolutions
- Final: Bhabha observables and cross-section, including detector resolutions
- ► N.B.: The GUINEAPIG sample for all these plots is the same.
- The differences between the GUINEAPIG and the model spectra are very similar for all stages of the reconstruction

Comparison: Initial vs. Final



- Initial: Initial Particle Energies Fit (for model validation)
- No Smearing: Bhabha observables and cross-section, no detector resolutions
- Final: Bhabha observables and cross-section, including detector resolutions
- ► N.B.: The GUINEAPIG sample for all these plots is the same.
- The differences between the GUINEAPIG and the model spectra are very similar for all stages of the reconstruction

Section 4:

Conclusions

32 / 34

Conclusions

- Luminosity spectrum reconstruction is possible with Bhabha events
- Studies for 3 TeV CLIC are documented in comprehensive paper [1]
- Some studies for 350 GeV / 380 GeV CLIC were done as well [2]
 - Reconstruction at the lower energy
 - Systematic effects from Detector resolution mis-modelling
- One would need some luminosity spectra for FCC to start understand if this approach can be used
- Source Code: https://gitlab.cern.ch/CLICdp/CLICDetSVN/DiffLumi

References

- S. Poss and A. Sailer. "Luminosity Spectrum Reconstruction at Linear Colliders". In: Eur. Phys. J. C 74 (2014), p. 2833.
- [2] E. Fullana and P. Zehetner. Top quark mass measurement in the continuum + luminosity spectrum. 2018. URL: https://indico.cern.ch/event/703821/contributions/3102578/.

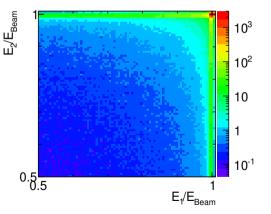
Thank you for your attention

Backup Slides

O FCC

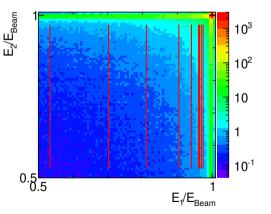
36 / 34

- Luminosity spectrum has strong peak and long tail
- χ^2 -fit requires binned events and sufficient number of events in each bin
- Too coarse binning smears the peak, too fine binning leaves not enough events per bin in the tail
- Use equiprobability binning: Varying bin size, but the same number of entries in each bin

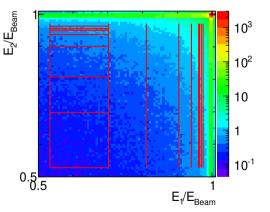


O FCC

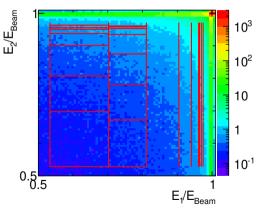
- Luminosity spectrum has strong peak and long tail
- χ^2 -fit requires binned events and sufficient number of events in each bin
- Too coarse binning smears the peak, too fine binning leaves not enough events per bin in the tail
- Use equiprobability binning: Varying bin size, but the same number of entries in each bin
- Slice events first along dimension 1 into equal parts



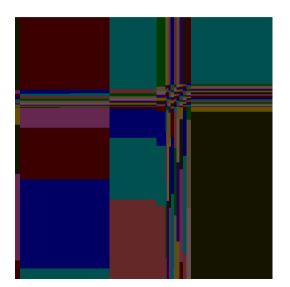
- Luminosity spectrum has strong peak and long tail
- χ^2 -fit requires binned events and sufficient number of events in each bin
- Too coarse binning smears the peak, too fine binning leaves not enough events per bin in the tail
- Use equiprobability binning: Varying bin size, but the same number of entries in each bin
- Slice events first along dimension 1 into equal parts
- Slice parts of dimension 1 into equal parts along dimension 2



- Luminosity spectrum has strong peak and long tail
- χ^2 -fit requires binned events and sufficient number of events in each bin
- Too coarse binning smears the peak, too fine binning leaves not enough events per bin in the tail
- Use equiprobability binning: Varying bin size, but the same number of entries in each bin
- Slice events first along dimension 1 into equal parts
- Slice parts of dimension 1 into equal parts along dimension 2



- Luminosity spectrum has strong peak and long tail
- χ^2 -fit requires binned events and sufficient number of events in each bin
- Too coarse binning smears the peak, too fine binning leaves not enough events per bin in the tail
- Use equiprobability binning: Varying bin size, but the same number of entries in each bin
- Slice events first along dimension 1 into equal parts
- Slice parts of dimension 1 into equal parts along dimension 2
- Wrote program to create, store, and fill equiprobability in 2D and 3D

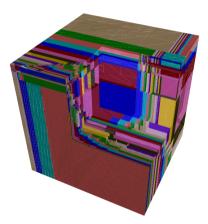


Binning 3D

The relative centre-of-mass energy calculated from the angles

 $\frac{\sqrt{s'_{acol}}}{\sqrt{s_{nom}}} = \sqrt{\frac{\sin(\theta_1) + \sin(\theta_2) + \sin(\theta_1 + \theta_2)}{\sin(\theta_1) + \sin(\theta_2) - \sin(\theta_1 + \theta_2)}} \text{ gives not}$ enough information to reconstruct 2D spectrum

- Additionally use the electron and positron energy measured with calorimeter to see which of the particles lost energy
- These three observables are filled into 3D equiprobability histogram



(FCC

38/34

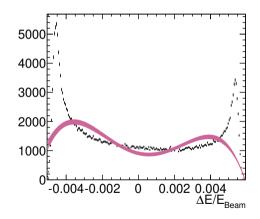
Fitting with Chebyshev Polynomials

- Fitting with Chebyshev polynomials would avoid trouble of model description
- $f(x) = \sum_i p_i \text{Cheb}_i(x)$

- Fitting with Chebyshev polynomials would avoid trouble of model description
- $f(x) = \sum_{i} p_i \text{Cheb}_i(x)$
- But

O FOC

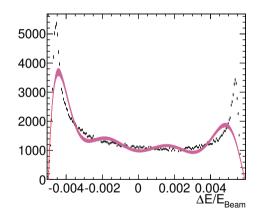
5 Parameters



- Fitting with Chebyshev polynomials would avoid trouble of model description
- $f(x) = \sum_{i} p_i \text{Cheb}_i(x)$
- But

O FOC

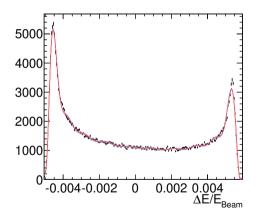
- 5 Parameters
- 10 Parameters



- Fitting with Chebyshev polynomials would avoid trouble of model description
- $f(x) = \sum_{i} p_i \text{Cheb}_i(x)$
- But

○ FCC

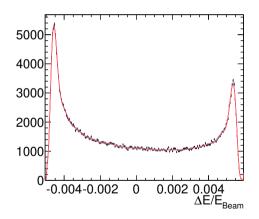
- 5 Parameters
- 10 Parameters
- 26 Parameters: χ^2 /ndf = 668/173



- Fitting with Chebyshev polynomials would avoid trouble of model description
- $f(x) = \sum_{i} p_i \text{Cheb}_i(x)$
- But

○ FCC

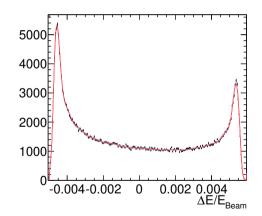
- 5 Parameters
- 10 Parameters
- 26 Parameters: χ^2 /ndf = 668/173
- 35 Parameters: χ^2 /ndf = 226/164



- Fitting with Chebyshev polynomials would avoid trouble of model description
- $f(x) = \sum_{i} p_i \text{Cheb}_i(x)$
- But

○ FCC

- 5 Parameters
- 10 Parameters
- 26 Parameters: χ^2 /ndf = 668/173
- 35 Parameters: χ^2 /ndf = 226/164
- Saves trouble of convolution, but at the cost of many parameters
- Could also fit centre only and do convolution with Gauss, but still need larger number of parameters



○FCC

w

39/34

Reweighting Fit Details

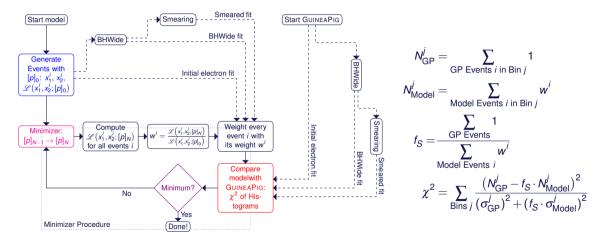
Do not have to calculate any (numerical) convolutions:

The distribution of a random variate (x_h) , which is based on the convolution of two probability density functions (PDFs) is equal to the distribution of the sum of the individual random variates $(x_f \text{ and } x_g)$.

$$h(x) \equiv (f \otimes g)(x) \to x_h = x_f + x_g.$$

Then the new weights can be calculated from the products of the individual PDFs

$$= \frac{\rho_{\text{region}}^{N} b\left(x_{\text{Strahlung}}^{i,1},[\boldsymbol{p}]_{N}\right) b\left(x_{\text{Spread}}^{i,1},[\boldsymbol{p}]_{N}\right) g\left(x_{\text{G}}^{i,1},[\boldsymbol{p}]_{N}\right) b\left(x_{\text{Strahlung}}^{i,2},[\boldsymbol{p}]_{N}\right) b\left(x_{\text{Spread}}^{i,2},[\boldsymbol{p}]_{N}\right)}{\rho_{\text{region}}^{0} b\left(x_{\text{Strahlung}}^{i,1},[\boldsymbol{p}]_{0}\right) b\left(x_{\text{Spread}}^{i,1},[\boldsymbol{p}]_{0}\right) g\left(x_{\text{G}}^{i,1},[\boldsymbol{p}]_{0}\right) b\left(x_{\text{Spread}}^{i,2},[\boldsymbol{p}]_{0}\right) g\left(x_{\text{G}}^{i,2},[\boldsymbol{p}]_{0}\right)}$$



Effect on the Smuon Mass Measurement (I) (LCD-Note-2011-018)

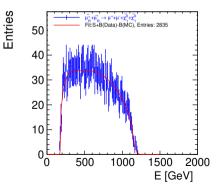
- $\blacktriangleright \ e^+e^- \rightarrow \tilde{\mu}^+\tilde{\mu}^- \rightarrow \mu^+\mu^-\tilde{\chi}\tilde{\chi}$
- Fit background subtracted muon energy distribution to extract smuon and neutralino mass with $f(E_{\mu}; m_{\tilde{\mu}}, m_{\tilde{\chi}}) = \text{Box} \times \sigma(\sqrt{s}) \otimes \mathscr{L}(\vec{p}) \otimes \text{ISR} \otimes \text{DetRes}$
- ► Fit with all parameters of luminosity spectrum varied by ±σⁱ_p/2 individually

$$\sigma_{m_{\tilde{\mu}}}^2 = \sum_{i,j} \delta_i C_{ij} \delta_j \qquad \qquad \delta_i = m_{+_i} - m_{-_i}$$

$$m_{+_i} = f\left(\vec{p} + \vec{e}_i \frac{\sigma_{p_i}}{2}\right) \quad m_{-_i} = f\left(\vec{p} - \vec{e}_i \frac{\sigma_{p_i}}{2}\right)$$

with the correlation matrix

$$\boldsymbol{\mathcal{C}} = \begin{pmatrix} 1 & -0.6 & \dots & -0.02 \\ -0.6 & 1 & \dots & 0.04 \\ \dots & \dots & \dots & \dots \\ -0.02 & 0.04 & \dots & 1 \end{pmatrix}$$



Effect on the Smuon Mass Measurement (II)(LCD-Note-2011-018)

Results:

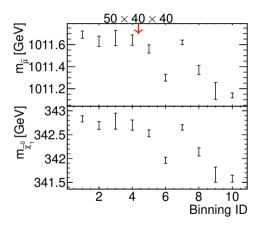
○ FCC

Using our reconstructed spectrum (e.g.,50 × 40 × 40 bins):

$$\begin{split} m_{\tilde{\mu}} = & (1011.6 \pm 3.0 (\text{stat}) \pm 0.04 (\text{par})) \text{ GeV}, \\ m_{\tilde{\chi}} = & (342.5 \pm 6.8 (\text{stat}) \pm 0.07 (\text{par})) \text{ GeV} \end{split}$$

Conclusion:

- Small dependence on number of bins used during reconstruction, but changes smaller than statistical error
- The luminosity spectrum reconstruction has no significant effect on μ̃/χ mass measurements



Systematic error from parameter reconstruction only