Energy & Polarisation workshop, Sep 21, 2022, CERN

Crossing-angle and beambeam effects at FCC-ee

E. Perez (CERN)

Based on work done 3 years ago with P. Janot, D. Shatilov, Y.Voutsinas

For details, see : "Polarization and center-of-mass energy calibration at FCC-ee", A. Blondel, P. Janot, J. Wenninger et al, <u>arXiv:1909.12245</u>

See also the talk from D. Shatilov on Tuesday in WP2

When not specified otherwise, numbers refer to what happens at the Z peak.

Uncertainty on \sqrt{s} is the driving systematic uncertainty on many key EW precision measurements at FCC-ee.

- Beam energies can be measured with an exquisite precision at the Z peak and the WW threshold, thanks to the Resonant Depolarisation method
 - unique to circular colliders
 - uses non-colliding bunches
 - leads to δ (\sqrt{s}) = 100 keV at the Z peak (i.e. 10⁻⁶ rel.), < 300 keV at WW
- Crossing angle α = 30 mrad:

$$\sqrt{s} = 2\sqrt{E_+E_-}\,\cos\frac{\alpha}{2}$$

$$\frac{d\sqrt{s}}{\sqrt{s}} = \frac{1}{4} \,\alpha \,d\alpha$$

To contribute e.g. 10 keV to the uncertainty on \sqrt{s} at the Z peak, the crossing angle must be known to about 13 µrad i.e. to 0.4 ‰.

Measurement of the crossing angle

energy spread to be determined in-situ

- Beam Position Monitors placed on the quads close to the IP measure α
 - But expected precision not better than O (0.1) mrad
 - At the Z peak, corresponds to O (100 keV) on \sqrt{s}
- α can be measured much better by the experiment using the constrained kinematics of dimuon events $ee \rightarrow \mu\mu (\gamma)$

$$\alpha = 2 \arcsin \left[\frac{\sin (\varphi^- - \varphi^+) \sin \theta^+ \sin \theta^-}{\sin \varphi^- \sin \theta^- - \sin \varphi^+ \sin \theta^+} \right]$$

Syst. uncertainty of O (0.1 µrad)
Negligible contribution to $\delta(\sqrt{s})$
See later talk by PJ: absolute detector alignment)
NB: the same events also allow the

One million dimuon events

Before it reaches the IP :

Numerical determinations

Numerical tools to determine / study the beam-beam effects:

- LifeTrack (D. Shatilov) : the reference. Accelerator physics code, multi-turn.
- Guinea-Pig (D. Schulte): single-turn. Need to pass equilibrium beam parameters.
- Analytical model (E.P.) : analytical calculations using the well-known expressions of the field created by a gaussian charge distribution.

• Average increase of α : $\Delta \alpha = 0.17$ mrad, i.e. $\Delta \alpha / \alpha \sim 0.6\%$

Importance of beam-beam effects for \sqrt{s} determination

$$\sqrt{s} = 2\sqrt{E_+E_-} \cos\frac{\alpha}{2} = 2\sqrt{|p_{z,+}p_{z,-}|}$$
$$\delta\alpha = \frac{1}{\tan\alpha/2} \left(\frac{\delta E_+}{E_+} + \frac{\delta E_-}{E_-}\right),$$

BB effects do not affect the p_z . I.e. exact compensation of :

- The increase of Ee
- The increase of α (decrease of $\cos \alpha/2$)

However these effects can not be ignored, because :

$$\sqrt{s} = 2\sqrt{E_{+}^{0}E_{-}^{0}}\cos\alpha_{0/2} = 2\sqrt{E_{+}E_{-}}\cos\alpha_{/2},$$

E in absence of BB effects, a with BB effects, measured with RDP area with dimuons

To go to \sqrt{s} : one needs to know α_0 , i.e. in addition to α , the xing angle increase induced by the BB effects, $\Delta \alpha = \alpha - \alpha_0$.

Want to know $\Delta \alpha$ to ~ 13 µrad, hence to a relative precision of O(10 %).

Measurement of the crossing-angle increase

Beam-beam effects scale linearly with the bunch intensities when everything else is equal. E.g. energy increase of electrons prop. to intensity of positron bunch.

 \rightarrow measure $\Delta \alpha$ by measuring the crossing angle in bunches of different intensities

Filling period of the machine, at the beginning of each fill : naturally offers collisions with bunches with N < nominal.

N/bunch is gradually increased, starting from 50% of Nnominal, e.g. adding 10% of the nominal N per step, every O(50 sec) in e- or e+. The beams do collide during this filling, with nominal optics.

Measure α in each filling step, extrapolate to N = 0.

Table: LifeTrack simulation, D. Shatilov.

intensities			Bunch length (i.e. E spread)			ΔE in keV					
$N_{\rm part}^+$	$N_{\rm part}^{-}$	\mathcal{L}	σ_{δ}^+	σ_{δ}^{-}	$\sigma_{\sqrt{s}}$	δI	E_+	δE_{-}		lpha	$N_{\mu^+\mu^-}$
0.50	0.50	0.37	0.68	0.68	0.680	39	9.2	39.2	3	0.1147	49210
0.50	0.55	0.38	0.79	0.61	0.705	47	7.9	33.7	3	0.1193	50540
0.60	0.55	0.44	0.64	0.84	0.747	35	5.5	51.5	3	0.1273	58250
0.60	0.65	0.50	0.87	0.68	0.781	52	2.9	39.2	3	30.1347	66500
0.70	0.65	0.56	0.69	0.93	0.819	4().1	56.5	3	0.1413	74480
0.70	0.75	0.62	0.94	0.74	0.846	57	7.5	43.8	3	0.1480	82460
0.80	0.75	0.68	0.76	0.99	0.883	44	4.7	61.6	3	0.1553	90440
0.80	0.85	0.74	1.02	0.80	0.917	63	3.4	45.6	3	0.1593	98420
0.90	0.85	0.81	0.82	1.04	0.936	49	9.2	65.2	3	0.1673	107730
0.90	0.95	0.87	1.09	0.84	0.973	6'	7.5	49.2	3	0.1707	115710
1.00	0.95	0.91	0.86	1.12	0.998	49	9.2	67.5	3	0.1707	121030
1.00	1.00	1.00	1.00	1.00	1.000	6).2	60.2	3	80.1760	133000
7 Normalised to nominal							(k	eV)		(mrad)	Perez

At Z and WW : bunch length σ at equilibrium is dominated by beamstrahlung.

- hence it varies during the filling steps
- and when σ increases: energy kick on the particles of the opposite bunch decreases (smaller charge density)

Variation of energy kicks with the length σ of the opposite bunch studied (everything else being constant) in analytical calculations.

For FCC bunches at the Z, in the range of interest:

$$\delta E^{\pm} \propto \frac{N_{\text{part}}^{\mp}}{\sigma_{\delta}^{\mp 2/3}}.$$

Scaling of the energy kicks

Cross-check of the scaling given on the last slide, with the numbers coming from the LifeTrack simulation : Slide PJ @ FCC week, Brussels

Correction of beam-beam effects: determination of α_0

LifeTrack simulation: shows that the scaling of

$$\alpha$$
 versus $\sqrt{N_{\mu\mu}}$ / $\sigma^{1/6}$
with $\sigma = \sigma + \oplus \sigma$

does remain.

 σ is prop. to the beam energy spread.

Can be measured in situ very precisely, see next talk by PJ.

With an intensity ramp of O(10) steps, each of 40 sec measurements:

Can determine α_0 with a precision of about 3 µrad (and $\Delta \alpha$ within 2%)

i.e. δ (α) negligible (a few keV) to δ (\sqrt{s})

Alternatives

In case the filling period could not be used (e.g. beam instabilities): can still exploit the dependence of beam-beam effects w.r.t. bunch intensities with e.g. :

- Use natural bunch population spread, or have half of the bunches with 99% nominal current
 - Inducing a minute loss of luminosity of 0.75%
- Or better, use the fact that each bunch population varies between 101% and 99% of the nominal over every period of 104 seconds, with alternate e[±] injection every 52 seconds.
 - Measure α , σ_{vs} and N_{uu} every 26 seconds (just before and just after any top-up)
 - Precision on α of 0.016 mrad / \sqrt{hours} at the Z pole

Corresponding to a precision on \sqrt{s} on 10 keV/ \sqrt{hours} at the Z pole

Other alternative (?) using timing...

Due to the xing angle: The longitudinal position (within its bunch) of an interacting e+/- is determined by the time of the interaction (with $\sigma_z = 12 \text{ mm}$, $\sigma_t = 30 \text{ ps}$):

"Central" vs "head" collisions

Vary some bunch parameters:

The difference between the maximum (reached at $z \sim 0$) and the value at $z = 1 \sigma_z$ is well correlated with the average.

- linear behaviour

MC events (Guinea-Pig): For each event, one has the time of the interaction.

Make three bins in the timing distribution:

- Head : time > σ_t
- Central : $\sigma_t < t < \sigma_t$
- Tail : time < σ_t

 Δ Kick = Kick (central bin) – Kick (head bin). Δ kick ~ linear with the average kick.

Experimental sensitivity ?

Assume that we can bin the dimuon events according to the timing :

- Measure the effective crossing angle separately for the "head" and the "central" collisions
- $\alpha_{\text{central}} \alpha_{\text{head}} = (\alpha_{\text{central}} \alpha_0) (\alpha_{\text{head}} \alpha_0) = \Delta \text{Kick of the previous slide}$
- From the correlation shown on the previous slide:
 - the measurement of α_{central} α_{head} (i.e. of Δkick) gives the average kick (i.e. the average Δα, i.e. α₀)
- Can be a complementary check of the method described in the paper (does not require bunches with different intensities).

Plugging in some timing resolution:

- With a worse and worse resolution: $\alpha_{central} \alpha_{head}$ decreases as expected (resolution washes out the difference)
- Effect of resolution is bad when σ_z is decreased (expected)
- Apart for large σ_z variations, linear correlation is maintained and $\alpha_{central}$ - α_{head} remains large enough to be measured, even with a resolution of tens of ps.

May be worth pursuing a bit...?

Conclusions

- The crossing angle can be measured precisely from dimuon events.
- Beam-beam effects lead to an increase of the effective crossing angle.
 - This increase must be known, in order to exploit the very precise resonant depolarisation measurements of the energy of non-colliding bunches.
- The crossing angle increase can be measured in-situ using bunches of variable intensity
 - During the intensity ramp of each fill (filling period)
 - Or during stable collisions (thanks to top-up)
- Resulting uncertainties on $\Delta \alpha$, at the Z peak, lead to a few keV on $\delta(\sqrt{s})$
 - A bit higher for off-peak points (88 and 94 GeV), but uncertainty O(30 keV) in the worst case
- Can not be used at higher energies (low dimu rate & faster filling)
 - But precision from BPM is enough (larger uncertainty from RPD)
 - Could anyway be calculated (numerical tools would have been calibrated at the Z)