Beam energy (spread) measurement with dimuons

WG₄ – Status and Goals

- WG4 = (EPOL) Measurements in particle-physics experiments
 - Status of
 - Centre-of-mass energy absolute determination
 - Centre-of-mass energy relative determination (a.k.a. point-to-point)
 - Crossing angle and centre-of-mass energy spread
 - Longitudinal boost
 - Absolute angle determination
 - QED predictions

Status mostly unchanged since arXiv:1909.12245

- Main goal of the workshop : Get new and young physicists interested in these studies
 - Restart, reproduce, improve, and complete existing studies
 - Develop new studies to improve the precision
- Main goals of these studies
 - Precision EW / Higgs / top measurements

FCC EPOL WORKSHOP

CC Energy Calibration Polarization and Mono-chromatisa

See my introductory slides on Monday afternoon

In this talk

- Step-by-step "tutorial" to determine
 - The absolute centre-of-mass energy above the Z pole
 - The crossing angle
 - The centre-of-mass energy spread
 - The longitudinal boost (difference of energy between incoming electrons and positrons)
 - With $e^+e^- \rightarrow \mu^+\mu^-(\gamma)$ events
 - → The ISR photon is emitted mostly along the beam direction

ISR must be predicted with precision to account for these "deviations" Assumption taken in all calculations But in real life, it has an angular distribution And there might be photons emitted from both beams There might also be photons emitted by the muons (FSR)

→ The Z might be on-shell or off-shell

On-shell : a.k.a. radiative returns to the Z pole On-shell: Can use the Z mass constraint to determine \sqrt{s} with precision

→ The calculations that follow apply to on-shell and off-shell cases

7(*)

Centre-of-mass energy \sqrt{s} and crossing angle α

- \square Beams cross at an angle α in the horizontal plane
 - The horizontal plane is defined as the plane subtended the two beams

Absolute \sqrt{s} determination with $e^+e^- \rightarrow Z\gamma$

Four energy-momentum equation (p_z, p_y, p_x, E) conservation

$$\begin{array}{rcl} E^+\cos\theta^+ & +E^-\cos\theta^- & +p_z^{\gamma} & = & (E_e^+ - E_e^-)\cos\alpha/2 & = & \varepsilon\sqrt{s/1 - \varepsilon^2} \\ E^+\sin\theta^+\sin\varphi^+ + E^-\sin\theta^-\sin\varphi^- & = & 0, & = & 0 \\ E^+\sin\theta^+\cos\varphi^+ + E^-\sin\theta^-\cos\varphi^- + |p_z^{\gamma}|\tan\alpha/2 & = & (E_e^+ + E_e^-)\sin\alpha/2, & = & \sqrt{s/1 - \varepsilon^2}\tan\alpha/2 \\ E^+ & +E^- & + & |p_z^{\gamma}|/\cos\alpha/2 & = & E_e^+ + E_e^-, & = & \sqrt{s/1 - \varepsilon^2}/\cos\alpha/2 \end{array}$$

- One mass constraint : the Z mass
 - Well measured at the Z pole (~100 keV)
- Four very-well measured μ^{\pm} angles
 - $\bullet \quad \theta^{+} \,,\, \theta^{-} \,,\, \varphi^{+} \,,\, \varphi^{-}$
- Six unknowns (or less well measured momenta)
 - p_z^{γ} , ε , E^+ , E^- , α , \sqrt{s}
 - One unknown too many for the four equations and the Z mass constraints
 - → But p_z^{γ} and ε cannot be determined independently from each other only $p_z^{\gamma} \varepsilon \sqrt{s} / \sqrt{1 \epsilon^2}$ can
 - Let's start with $\epsilon = 0$ in the next slide, and see where it brings

Solving the conservation equations with $\varepsilon = 0$

 $\begin{array}{rcl} E^+\cos\theta^+ & +E^-\cos\theta^- & +p_z^\gamma & = & 0\\ E^+\sin\theta^+\sin\varphi^+ + E^-\sin\theta^-\sin\varphi^- & = & 0,\\ E^+\sin\theta^+\cos\varphi^+ + E^-\sin\theta^-\cos\varphi^- + |p_z^\gamma|\tan\alpha/2 & = & \sqrt{s}\tan\alpha/2,\\ E^+ & +E^- & + & |p_z^\gamma|/\cos\alpha/2 & = & \sqrt{s}/\cos\alpha/2, \end{array}$

Eliminate p_z^{γ} and \sqrt{s} from the last two equations (p_x and E) $E^+(\sin \theta^+ \cos (\sigma^+ - \sin \alpha/2)) = E^-(\sin \theta^- \cos (\sigma^- - \sin \alpha))$

$$E^{+}(\sin\theta^{+}\cos\varphi^{+} - \sin\alpha/2) = -E^{-}(\sin\theta^{-}\cos\varphi^{-} - \sin\alpha/2)$$

Rewrite the p_y conservation equation

 $E^+\sin\theta^+\sin\varphi^+ = -E^-\sin\theta^-\sin\varphi^-$

Eliminate E⁺ and E⁻ in the ratio, and get the crossing angle from the muon angles

$$\alpha = 2 \arcsin \left[\frac{\sin \left(\varphi^- - \varphi^+ \right) \sin \theta^+ \sin \theta^-}{\sin \varphi^- \sin \theta^- - \sin \varphi^+ \sin \theta^+} \right]$$

• This result holds even for $\varepsilon \neq 0$ (substituting $\sqrt{s} / \sqrt{1 - \epsilon^2}$ for \sqrt{s} in the last two equations)

Solving the conservation equations with $\varepsilon = 0$

Define reduced muon energies x_±

$$x_{\pm} = E^{\pm} \cos(\alpha/2) / (\sqrt{s} - |p_Z^{\gamma}|)$$

Rewrite p_y and E conservation equations accordingly

$$x_+ \sin \theta^+ \sin \varphi^+ + x_- \sin \theta^- \sin \varphi^- = 0$$

$$x_+ + x_- = 1$$

 $\hfill \quad \text{Solve for } x_{\pm}$

$$x_{\pm} = \frac{\mp \sin \theta^{\mp} \sin \varphi^{\mp}}{\sin \theta^{+} \sin \varphi^{+} - \sin \theta^{-} \sin \varphi^{-}}$$

• Again, this result holds for $\varepsilon \neq 0$ (substituting $\sqrt{s} / \sqrt{1 - \epsilon^2}$ for \sqrt{s} in the last equation)

Solving the conservation equations with $\varepsilon = 0$

- We are left with the p_z conservation equation
- **Define the reduced ISR photon energy x_{\gamma} as**

$$x_{\gamma} = p_z^{\gamma} / \sqrt{s}$$

Rewrite the p_z conservation equation as a function of the reduced variables

$$x_{+}\cos\theta^{+} + x_{-}\cos\theta^{-} + \frac{x_{\gamma}\cos\alpha/2}{1 - |x_{\gamma}|} = 0$$

• And solve it for x_{γ} as a function of the sole muon angles

$$x_{\gamma} = -\frac{x_{+}\cos\theta^{+} + x_{-}\cos\theta^{-}}{\cos(\alpha/2) + |x_{+}\cos\theta^{+} + x_{-}\cos\theta^{-}|}$$

$$\begin{aligned} x_{\pm} &= \frac{\mp \sin \theta^{\mp} \sin \varphi^{\mp}}{\sin \theta^{+} \sin \varphi^{+} - \sin \theta^{-} \sin \varphi^{-}} \\ \text{with} \\ \alpha &= 2 \arcsin \left[\frac{\sin \left(\varphi^{-} - \varphi^{+} \right) \sin \theta^{+} \sin \theta^{-}}{\sin \varphi^{-} \sin \theta^{-} - \sin \varphi^{+} \sin \theta^{+}} \right] \end{aligned}$$

• This result does NOT hold for $\varepsilon \neq 0$

And for $\varepsilon \neq 0$?

- Substituting \sqrt{s} / $\sqrt{1-\epsilon^2}$ for \sqrt{s} in the definition of the reduced variables
 - The p_z conservation equation becomes a little more involved

$$x_{+}\cos\theta^{+} + x_{-}\cos\theta^{-} + \frac{(x_{\gamma} - \varepsilon)\cos\alpha/2}{1 - |x_{\gamma}|} = 0$$

- Cannot solve for x_{γ} and ε independently ...
 - The best that I could come up with so far (but I started this morning)

$$\frac{x_{\gamma} - \varepsilon}{1 \pm \varepsilon} = -\frac{x_{+} \cos \theta^{+} + x_{-} \cos \theta^{-}}{\cos(\alpha/2) \pm (x_{+} \cos \theta^{+} + x_{-} \cos \theta^{-})} \quad \text{where} \quad \pm = \operatorname{sgn}(x_{\gamma})$$

→ More work needed to make it user friendly and actually useable: Take it up!

- In 1st approximation, the previous-slde formula gives a symmetrized sum of ISR and boost
 - With small correction(s) to be worked out

(mistakes not 100% excluded from this slide!)

Example: \sqrt{s} spread and average boost

- Resulting distributions of x_{γ} , for 10⁶ dimuon events (every 5 minutes at the Z pole)
 - Solved with $\varepsilon = 0$

One million dimuon events

- The distribution of x_{γ} contains ISR + \sqrt{s} spread + muon angular resolution
 - Interesting project: solve the equations with $\varepsilon \neq 0$ (even numerically) to make them useful

Back to: Absolute \sqrt{s} determination with $e^+e^- \rightarrow Z\gamma$

- Above the Z pole : $\sqrt{s} = m_H$, $2m_W$, 240 GeV, $2m_{top}$, 365 GeV
 - The radiated photon energy is large, from 29 to 171 GeV: $E_{\gamma} \sim \sqrt{s/2} \times (1-m_Z^2/s)$
 - And x_{γ} varies from 0.23 to 0.47 : can safely ignore the boost due to \sqrt{s} spread
 - Distribution of the true dimuon mass (from the generator, no FSR) at $\sqrt{s} = 160 \text{ GeV}$

• $M_{\mu\mu}/\sqrt{s} = (1 - 2 x_{\gamma})^{1/2}$ with $\varepsilon = 0$: A fit of the dimuon mass distribution gives the \sqrt{s} rescaling factor

Absolute \sqrt{s} determination with $e^+e^- \rightarrow Z\gamma$

Examples of distributions (10⁶ events)

- Dileptons
 - p > 10 GeV
 - $10 < \theta < 170$ degrees
- Dijets
 - E > 20 GeV
 - 25 < θ < 165 degrees
- Fit to a Breit-Wigner
 - × 2nd order polynomial

Absolute \sqrt{s} determination with $e^+e^- \rightarrow Z\gamma$

• First estimates for precision on the average \sqrt{s}

	√s	E _γ (GeV)	Ν _{μμ} (×10 ⁶)	N _{qq} (×10 ⁶)	σ _{√s} (μμ)	σ _{√s} (qq)	$\sigma_{\sqrt{s}}$ (comb.)	$\sigma_{\sqrt{s}}$ (EPOL)
6 ab-1	m _H	29	107	173	66o keV	280 keV	225 keV	200 keV ?
12 ab -1	2m _W	54	47	667	900 keV	340 keV	285 keV	300 keV
5 ab-1	240 GeV	102	5.6	53	4.2 MeV	2.4 MeV	1.7 MeV	-
0.2 ab-1	2m _{top}	163	0.1	0.3	51 MeV	6o MeV	26 MeV	—

- Bonus: RDP available at the H resonance / WW threshold, with similar precision
 - RDP can be used to calibrate / validate the radiative return method
- All reported numbers obtained with
 - A home-made event generator, including home-made ISR generation (no FSR)
 - Gaussian smearing of muon / quarks momenta/energies and angles
 - Standalone analysis code / only statistical uncertainties / no systematic studies (ISR!)
 - Everything should be done professionally now

NFW!

Improving the \sqrt{s} precision at 350 GeV

- At the top-pair threshold, can use the 2 million WW events (+E,p conservation)
 - With known \sqrt{s} , can be used to measure the W mass with a statistical precision of 2.2 MeV
 - And even 1.1 MeV with the fully hadronic final state
 - → See Marina Béguin's thesis : <u>https://tel.archives-ouvertes.fr/tel-02490574</u>
 - Alternatively, with a known m_w (from the threshold measurement)
 - Can be used to measure \sqrt{s} with a precision of 10 MeV (5 MeV)
 - → Which translates to a top mass systematic uncertainty of 5 MeV (2.5 MeV)
 - According to Marina's thesis, the W mass is best measured at the WW threshold
 - With the cross-section lineshape (all final states used)
 - With direct reconstruction (from the lepton momentum with the semi-leptonic final state)
 - → Study performed with DELPHES, and its CLD parameterization
 - The colour reconnection effects in the fully hadronic final state should be controllable (?)
 - To better than 1 MeV with 100 million WW events collected at \sqrt{s} = 240 GeV
 - → Maybe also use ZZ events in the fully hadronic final state + knowledge of the Z mass?
 - Project: Repeat, cross check and improve Marina's analysis
 - For \sqrt{s} at the top-pair threshold ; for mW at 160 and 240 GeV;

- $\Box = \sqrt{s}$ spread strongly affects \sqrt{s} -dependent observables (e.g., Z, W top widths, α_{QED})
 - Must therefore be measured with adequate precision
 - So that related uncertainty be smaller than the expected statistical precision

- If not attended, the centre-of-mass energy spread:
 - Increases Γ_z , reduces σ^0 , increases A_{FB}(87.9 GeV), decreases A_{FB}(94.3 GeV)

Extract from the conclusions of <u>arXiv:1909.12245</u>

r							
Pseudo Observable		Γ_{Z}		$\alpha_{ m QED}$	(m_Z^2)	$-\Gamma_{\rm W}$	$\Gamma_{\rm top}$
Acceptable error	($35\mathrm{ke}$	V	10	-5	$0.5\mathrm{MeV}$	$18\mathrm{MeV}$
$\sqrt{s} \; (\text{GeV})$	87.9	91.2	93.8	87.9	93.8	161	350
$\sigma(\delta E)/\delta E$	0.8%	0.2%	0.8%	0.7	7%	11%	35%
$N_{\rm e^+e^- \rightarrow \mu^+\mu^-}$	510^4	810^{5}	510^4	6.5	10^{4}	260	25
L $(10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1})$			230			28	1.8
$\sigma_{\mu\mu} \text{ (pb)}$	185	1450	460	185	460	4.0	0.8
Dimuon rate (Hz)	425	3325	1050	425	1050	1.1	0.015
Time needed	$2 \min$	$4 \min$	$< 1 \min$	$3 \min$	$1 \min$	$4 \min$	$30 \min$

- All these numbers ought to be checked with professional analysis (gen, sim, reco, ana)
- A column for the Higgs direct production at the H pole ($\sqrt{s} = m_H$) must be added

□ \sqrt{s} spread strongly affects \sqrt{s} -dependent observables (e.g., e⁺e⁻ → H peak XS)

- Understand with what precision \sqrt{s} can be measured in situ
- Understand with what precision the energy spread must be measured
 - And check if there are enough dimuon (dilepton) events to provide this precision regularly

- **In real life, we'll deal with a distribution that gathers many effects**
 - ISR, angular resolution, \sqrt{s} spread, longitudinal boost
 - Need to disentangle all these effects
 - Master the boost impact
 - → Analytically (best) or numerically
 - Predict ISR with adequate precision
 - → Improvements needed ?
 - Improve statistical uncertainty
 - → All lepton species ?
 - Map angular resolution from data
 - → What precision is needed ?
 - → What mapping is needed ?
 - → What resolution is needed ?

One million dimuon events

Need high-quality generation / simulation

A lot of work ahead !

- But also a lot of fun (speaking from experience)
 - And a possibility for many single-author publications

- **IMPORTANT ! A tutorial is foreseen on Thursday afternoon (Marcin Chrząszcz)**
 - Learn how to generate, simulate, analyse dimuon events and more in FCCSW
 - Come with your computer !
 - And apply what you have learnt to determine \sqrt{s} , spread, boost, angles, axes, etc.

FCC-ee precision measurements

	Strong √s depend	om <u>arXiv:2106.13885</u>				
	Observable	present	FCC-ee	FCC-ee	Comment and	• Or is it 0.15 MeV?
		value $\pm \text{ error}$	Stat.	Syst.	leading exp. error	
√s	$m_{\rm Z} \; ({\rm keV})$	91186700 ± 2200	4	100	From Z line shape scan Beam energy calibration	
Spread	$\Gamma_{\rm Z} \ ({\rm keV})$	2495200 ± 2300	4	25	From Z line shape scan Beam energy calibration	$\sqrt{s} \sim m$
√s	$\sin^2 \theta_{\rm W}^{\rm eff}(\times 10^6)$	231480 ± 160	2	2.4	from $A_{FB}^{\mu\mu}$ at Z peak Beam energy calibration	
Spread	$1/\alpha_{\rm QED}({\rm m}_{\rm Z}^2)(\times 10^3)$	128952 ± 14	3	small	from $A_{FB}^{\mu\mu}$ off peak QED&EW errors dominate	
√s	$m_W (MeV)$	80350 ± 15	0.25	0.3	From WW threshold scan Beam energy calibration	1/s~2m
Spread	$\Gamma_{\rm W} ~({\rm MeV})$	2085 ± 42	1.2	0.3	From WW threshold scan Beam energy calibration	
√s	$m_{\rm H}~({\rm MeV})$	125250 ± 170	2.5	0.8	From ZH direct reconstruction \sqrt{s} calibration	√s ~ 240 GeV
√s	m _{top} (MeV)	172740 ± 500	17	small	From $t\bar{t}$ threshold scan QCD errors dominate	$\sqrt{s} \sim 2 m_{top}$
P. Jano	ot		EPOL works	shop		00

²¹ Sept 2022