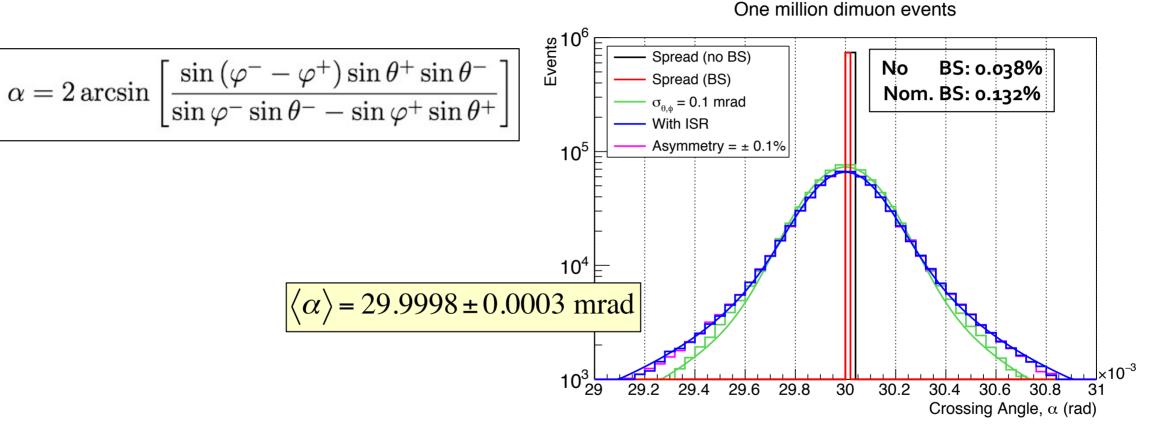

"Absolute" detector alignment

Reminder: Crossing angle α

 \square Beams cross at an angle α in the horizontal plane

Slide from previous talk

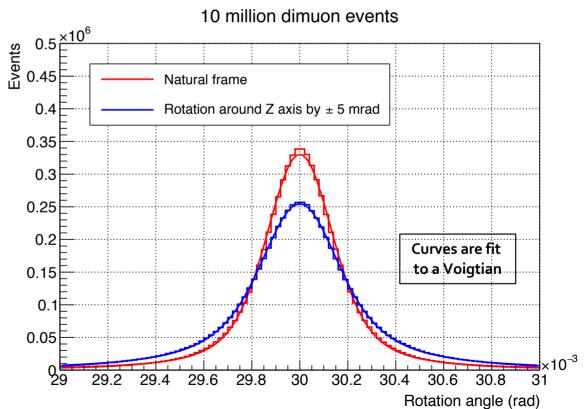
• The horizontal plane is defined as the plane subtended the two beams


EPOL workshop 21 Sept 2022

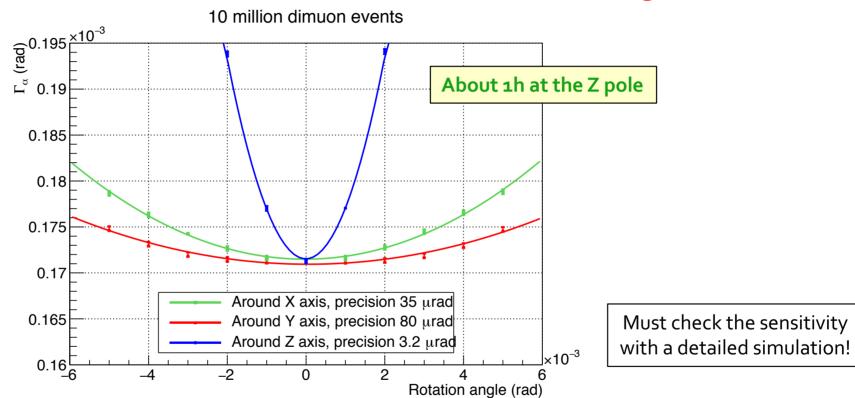
Why is alignment needed ?

- All the numbers presented in the previous talk were derived from the muon angles
 - Determined with respect to (X,Y,Z) axes as defined by the beams
 - The Z axis is the bisector of the two beam directions
 - The (X,Z) plane contains the two beams
 - The Y axis is perpendicular to the (X,Z) plane
 - → Called "natural frame" in the following
 - Any bias in the knowledge of the (x,y,z) axes will systematically affect the muon angles
 - And all derived quantities like \sqrt{s} , \sqrt{s} spread, masses, etc.
 - This requires an alignment of the (local) detector frame with the natural frame
 - Or vice versa, of course.

Reminder: Crossing angle determination

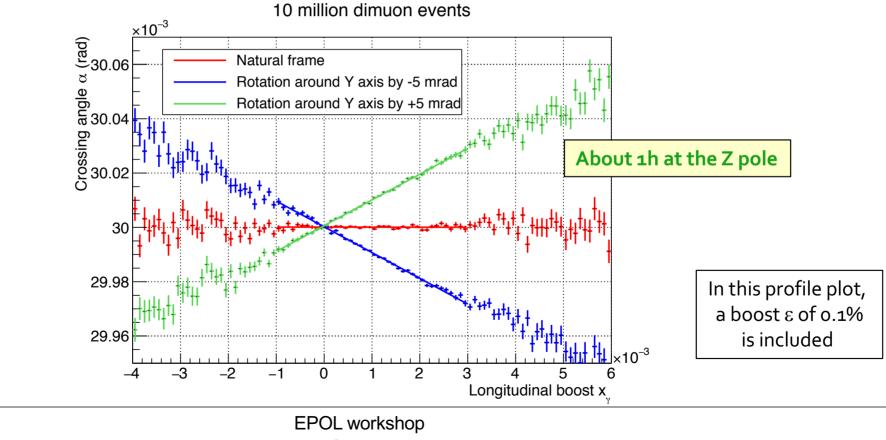

With 10⁶ dimuon events (every 5 minutes at the Z pole)

- Spread sensitive to anything happening in the transverse plane
 - φ resolution, p_T of emitted photons, and of course (X,Y,Z) axes knowledge

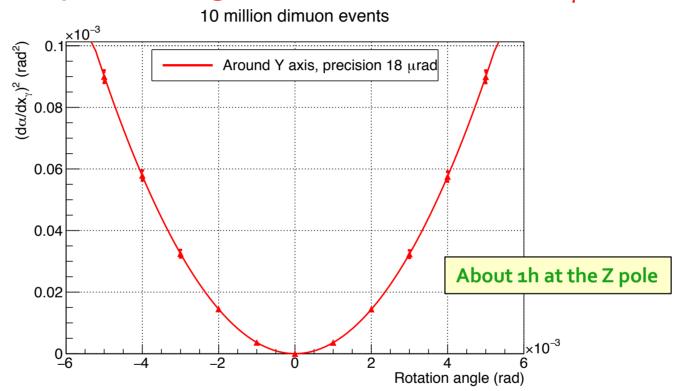

Influence of misalignment on α

- \Box Empirically, the spread of the α distribution <u>tends to increases</u>
 - With anything happening in the transverse plane
- **Example: rotation around the Z axis changes both X and Y directions**
 - Similarly
 - A rotation around X changes the Y axis
 - A rotation around Y changes the X axis
- Provides an alignment tool
 - By minimizing the α spread
 - Most sensitive variable: Voigtian width
 A Voigtian profile is the convolution of a Gaussian and a Breit Wigner
 - Maybe try with the half-height width ?
 - → Detailed simulation needed here to check

Sensitivity of the alignment method


• Minimize the spread of the α distribution to find the three Euler angles

- Important note: the natural spread of a is dominated by the φ resolution (here 100 μ rad)
 - Alignment precisions improve quadratically with the φ resolution (defines detector requirement)
- The Y axis rotation angle is determined with a bias close to the φ resolution with 10⁷ events


Improving the alignment around the Y axis

- Not much happens with a rotation around Y
 - The important (X,Z) plane, which contains the beams, remains untouched
 - However, the X and Z information get mixed by such a rotation
 - Resulting in a strong (linear) correlation between $<\alpha>$ and $<x_{\gamma}>!$

Improving the alignment around the Y axis

• Alignment obtained by minimizing the correlation between x_{y} and α :

- Improves the precision on that crossing angle by a factor of five.
 - With all the above, reach a precision of 0.1 μ rad on α and of 10⁻⁷ on x_{γ}
 - Variation of the x_{γ} spread already insignificant with 100 times less events

Remark about angular resolution

- **Angular resolution assumed to be 0.1 mrad uniformly over the detector**
 - It won't be the case in real life: may want to weigh the events accordingly
 - With a larger weight for events with a better angular resolution
- **Q:** How to measure the angular resolution to 10% or better
 - For any value of θ and ϕ ?
- **A: Take a muon track in dimuon events**
 - Refit it with the odd hits, on the one hand, and with the even hits, on the other
 - And compare the angles
 - Need only 100 tracks in each (θ , ϕ) bin for a 10% precision
 - 10⁶ dimuon events = 5 minutes at the Z pole = bins of 3×3 (mrad)²
 - Expected to be stable in time
 - Precision (or bin size) improves with dimuon statistics

Try ! (The IDEA detector may do wonders here)

Remark about detector acceptance

- One of the largest systematic uncertainty for the determination of $R_{\ell} = \frac{\sigma(Z \rightarrow hadrons)}{\sigma(Z \rightarrow leptons)}$
 - Especially the geometrical acceptance for lepton pairs
 - The expected statistical precision on this key observable is 3 10⁻⁶ !
 - → Used as input to $\Gamma_{\ell\ell}$, α_S , N_{ν} ...
- All numbers obtained so far use muons only above 10 degrees of the Z axis
 - May want to try to use lower angle muons (leptons)
 - And use the alignment method to define the acceptance
 - Angular resolution probably worse for lower angle leptons
 - Statistics may also be an issue
- Try !

A lot of work ahead !

- But also a lot of fun (speaking from experience)
 - And a possibility for many single-author publications

- **IMPORTANT ! A tutorial is foreseen on Thursday afternoon (Marcin Chrząszcz)**
 - Learn how to generate, simulate, analyse dimuon events and more in FCCSW
 - Come with your computer !
 - And apply what you have learnt to determine \sqrt{s} , spread, boost, angles, axes, etc.