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Background

Electron Polarization in a Storage Ring

• Periodic spin direction ො𝑛0

From [1-8]
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Electron Polarization in a Storage Ring

• No depolarizing effects of radiation in perfectly planar ring 

Background

From [1-8]
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Electron Polarization in a Storage Ring

• “Spin diffusion”

Background

From [1-8]
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Electron Polarization in a Storage Ring

Background

From [1-8]
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Electron Polarization in a Storage Ring

Background

From [1-8]
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Electron Polarization in a Storage Ring

• “Spin matching”

Background

From [1-8]

𝑠𝑖 𝑠𝑓

𝑮𝒙,𝒚,𝒛(𝑠𝑖 → 𝑠𝑓) = 𝟎

ෝ𝒏𝟎

See [9] for more details.
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Background

Electron Polarization in a Storage Ring

𝑃 𝑡 = 𝑃∞ 1 − 𝑒−𝑡/𝜏𝑒𝑞 + 𝑃0𝑒
−𝑡/ 𝜏𝑒𝑞

𝜏𝑒𝑞
−1 = 𝜏𝑝𝑜𝑙

−1 + 𝜏𝑑𝑒𝑝
−1

To estimate 𝜏𝑑𝑒𝑝
−1 , do Monte Carlo tracking with only spin diffusion effects

𝑃𝑡𝑟 𝑡 = 𝑃0𝑒
−𝑡/𝜏𝑑𝑒𝑝 ≈ 𝑃0 − 𝑡/𝜏𝑑𝑒𝑝

✓ Can be accurately 

approximated from the closed 

orbit with analytical formulas 

× Hard to estimate analytically. 

May be affected significantly by 

nonlinearities

From [1-8]
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EIC-ESR Spin Rotator System 

• Rotates ො𝑛0 to longitudinal at the IP for a wide range of e-beam energies (5-18 GeV)

Background

𝜙4
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Images from [10]

𝑧
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EIC-ESR Spin Matching Conditions

Background

𝜙4
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Images from [10], ESR spin matching conditions in [11] or [9].
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00

𝑮𝒙 = 𝟎 by conditions on 

quads between solenoids

𝑮𝒛 = 𝟎 by conditions on 

periodic dispersion 𝜂, 𝜂′
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EIC-ESR Polarization Requirements

• Maintain average polarization of at least 70%

• Bunches should be replaced on average every 2.2 minutes

• For 𝑃∞ = 30%, need 𝜏𝑒𝑞 > 4.6 min

Background

Images from [10]



12Matt Signorelli (mgs255@cornell.edu) EPOL22 – WP1 – September 21, 2022

Motivation for Tracking Studies

• Most accurate statistics including all nonlinearities 

• Verify effects/significance of first-order spin matching

• Must cross-check between various modern codes

• Verify polarization robustness (i.e. with misalignments, 𝜖𝑦-creator)
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Methods

Monte-Carlo Spin Tracking Methods with Radiation

• Map Tracking – damped maps generated between each bend center 

(radiation points*) by PTC w/ user-specified order

• Bmad Tracking – element-by-element damped nonlinear maps w/ 

radiation points after each element

• PTC Tracking – element-by-element symplectic integration w/ 

radiation points at each step within the element

• Bmad toolkit conveniently implements all the above tracking methods and can 

be run in parallel on a GPU cluster

*bend-splitting for radiation – “SLICKTRACK” – is necessary for accurate spin tracking 
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Methods

ESR 18 GeV Lattice Tracking Studies

• v5.3: 𝑮𝒙 = 𝟎, 𝑮𝒛 = 𝟎, 𝜼, 𝜼′ ≠ 𝟎 in solenoid modules

— 1IP

• v5.6: 𝑮𝒙 = 𝟎, 𝑮𝒛 ≠ 𝟎, 𝜼, 𝜼′ = 𝟎 in solenoid modules

— 1IP

— 𝜖𝑦-creator

— 2IP

All trackings started with 5,000–10,000 particle distribution generated 

from analytical equilibrium 𝜖𝑎 , 𝜖𝑏 , 𝜖𝑐



15Matt Signorelli (mgs255@cornell.edu) EPOL22 – WP1 – September 21, 2022

v5.3 Results
𝐺𝑥 = 0,   𝐺𝑧 = 0

𝜂, 𝜂′ ≠ 0 in solenoid modules
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Polarization

• Polarization significantly worse in nonlinear case

• Such significant damping should not occur if starting w/ equilibrium distribution. Is 

this a clue on what’s happening?

Results – v5.3

v5.3 1IP

𝝉𝒆𝒒 [min] 𝑷∞

Analytical 31.1 61.3%

1st Order Map Tracking 30.7 66.4%

2nd Order Map Tracking 15.7 33.8%

3rd Order Map Tracking 6.5 14.0%

Bmad Tracking 5.6 12.1%

PTC Tracking 5.7 12.3%



17Matt Signorelli (mgs255@cornell.edu) EPOL22 – WP1 – September 21, 2022

Turn-by-turn RMS emittances

Nonlinearities might be driving tails of y-distribution to high amplitudes

→ Core emittance likely a better measure…

Results – v5.3
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Core emittance
— Emittance obtained by fitting a Gaussian 

to particles within some cutoff amplitude

— If perfectly Gaussian distribution,  

𝜖𝑐𝑜𝑟𝑒 = 𝜖𝑅𝑀𝑆 for all cutoff amplitudes

• Core emittances calculated as means of 

core emittance over turns 4,000 to end

• In nonlinear case, obtaining  ~5 nm of 

vertical emittance even in the core

Results – v5.3
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• There is some nonlinear effect present that:

→ Creates 5nm 𝜖𝑏 even in the core

→ Reduces DK polarization from 60% to 12%

• Only regions in ring where 𝜖𝑏 might be created is where there is coupling

• Try fully nonlinear trackings (including nonlinear solenoids) but with 1st, 

2nd and 3rd order quadrupoles in between solenoids (settable in Bmad)

Results – v5.3
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Core Emittance

• Almost entire effect presents with 2nd

order quadrupoles in coupled regions

• Coupling in solenoid modules appears 

to not cancel for off-energy particles, 

creating ~5 nm of vertical emittance

• Polarization?

Results – v5.3



21Matt Signorelli (mgs255@cornell.edu) EPOL22 – WP1 – September 21, 2022

Polarization

• Chromatic effects in solenoid module quadrupoles the primary culprit

Results – v5.3

v5.3 1IP

𝝉𝒆𝒒 [min] 𝑷∞

Analytical 31.1 61.3%

Bmad w/ 1st Order S.M. Quads 28.3 61.1%

Bmad w/ 2nd Order S.M. Quads 7.0 15.1%

Bmad w/ 3rd Order S.M. Quads 5.0 10.8%

Bmad Tracking 5.6 12.1%
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Conclusions – v5.3

• Coupling in solenoids appears to not fully cancel for off-energy particles

→ Creates ~5 nm of core vertical emittance

→ Reduces 𝑃∞ to 12%

• DA studies suggest having 𝜼, 𝜼′ = 𝟎 in solenoids highly beneficial

→ Must turn off the short solenoid & lose the longitudinal spin match

• Raises two questions:

1. Does having 𝜂, 𝜂′ = 0 in the solenoids fix off-energy coupling correction?

2. Can we live without a longitudinal spin match at 18 GeV?
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v5.6 Results
𝐺𝑥 = 0,   𝐺𝑧 ≠ 0

𝜂, 𝜂′ = 0 in solenoid modules
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Results – v5.6 1IP

Does having 𝜼, 𝜼′ = 𝟎 in the solenoids fix off-energy coupling correction?

Vertical core emittances: 

𝜼, 𝜼′ ≠ 𝟎 𝜼, 𝜼′ = 𝟎

✓
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Results – v5.6 1IP

Can we live without a longitudinal spin match at 18 GeV?

Linear 𝑃∞:

𝑮𝒛 = 𝟎
*nonlinearities give much lower actual 𝑃∞

𝑮𝒛 ≠ 𝟎

Maybe – need to check

nonlinear tracking
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Polarization

• Polarization holds up well for 1IP v5.6 in fully nonlinear case 

• Will the same robustness be observed when including a 𝜖𝑦-creator?

Results – v5.6 1IP

v5.6 1IP

𝝉𝒆𝒒 [min] 𝑷∞

Analytical 15.0 33.4%*

1st Order Map Tracking 14.0 32.9%

2nd Order Map Tracking 13.9 32.7%

3rd Order Map Tracking 13.7 32.1%

Bmad Tracking 13.7 32.1%

PTC Tracking 13.6 31.9%
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Several methods to create 𝝐𝒚
1. Localized closed 𝜂𝑦 bump

2. Delocalized 𝜂𝑦
3. Localized coupling near the IR

• Inserted closed 𝜂𝑦 bump in IP2 drift 

space that creates 2.5 nm 𝜖𝑦

• Optimized so 𝑮𝑦 = 0 for 1-turn from 

center of chicane

• Spin match was tricky: 𝜖𝑦 grew to ~ 5 nm

Results – v5.6 𝝐𝒚-creator 

←
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Polarization

• Careful implementation and vertical spin matching will be necessary if 

closed 𝜼𝒚-bump used as vertical emittance creator

Results – v5.6 𝝐𝒚-creator

v5.6 1IP v5.6 1IP 

+ 𝜼𝒚 bump

v5.6 1IP 

+ 𝜼𝒚 bump 

+ 𝑮𝒚 = 𝟎

𝝉𝒆𝒒 [min] 𝑷∞ 𝝉𝒆𝒒 [min] 𝑷∞ 𝝉𝒆𝒒 [min] 𝑷∞

Analytical 15.0 33.4% 6.8 29.3% 12.2 31.9%

1st Order Map Tracking 14.0 32.9% 6.4 14.5% 8.9 24.5%

2nd Order Map Tracking 13.9 32.7% 5.8 13.4% 6.2 17.1%

3rd Order Map Tracking 13.7 32.1% 5.6 13.0% 6.6 18.0%

PTC Tracking 13.6 31.9% 5.4 12.5% 6.4 17.5%
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Polarization

Results – v5.6 2IP

v5.6 2IP

𝝉𝒆𝒒 [min] 𝑷∞

Analytical 7.6 16.9%

1st Order Map Tracking 6.8 15.6%

2nd Order Map Tracking 5.6 13.0%

3rd Order Map Tracking 6.7 15.4%

Bmad Tracking 6.7 15.4%
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Conclusions

• Zero dispersion in the solenoid modules is necessary

• Else, coupling is not fully corrected for off-energy particles

• However, the longitudinal spin match is unachievable with 𝜂, 𝜂′ = 0

• v5.6 1IP (𝑮𝒛 ≠ 𝟎) maintains sufficient polarization in fully nonlinear case

• More work to be done on 𝝐𝒚-creation: determine most feasible method 

with least significant effect on polarization

• Closed 𝜂𝑦-bump would require spin matching, which proved difficult

• v5.6 2IP polarizations lower than 1IP
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