EIC ESR Tracking Studies

Matt Signorelli Cornell ERL/EIC Group PI: Georg Hoffstaetter

a passion for discovery

Cornell Laboratory for Accelerator-based Sciences and Education (CLASSE)

Electron Polarization in a Storage Ring

• Periodic spin direction \hat{n}_0

From [1-8]

Matt Signorelli (mgs255@cornell.edu)

EPOL22 – WP1 – September 21, 2022 2

Electron Polarization in a Storage Ring

• No depolarizing effects of radiation in perfectly planar ring

From [1-8]

Matt Signorelli (mgs255@cornell.edu)

EPOL22 – WP1 – September 21, 2022 3

Electron Polarization in a Storage Ring

• "Spin diffusion"

From [1-8]

4

Electron Polarization in a Storage Ring

From [1-8]

5

From [1-8]

6

Electron Polarization in a Storage Ring

• "Spin matching"

See [9] for more details.

From [1-8]

7

Matt Signorelli (mgs255@cornell.edu)

EPOL22 – WP1 – September 21, 2022

Electron Polarization in a Storage Ring

$$P(t) = P_{\infty} (1 - e^{-t/\tau_{eq}}) + P_0 e^{-t/\tau_{eq}}$$

 $\tau_{eq}^{-1} = \tau_{pol}^{-1} + \tau_{dep}^{-1}$

 Can be accurately approximated from the closed orbit with analytical formulas Hard to estimate analytically.
May be affected significantly by nonlinearities

To estimate τ_{dep}^{-1} , do Monte Carlo tracking with *only* spin diffusion effects

$$P_{tr}(t) = P_0 e^{-t/\tau_{dep}} \approx P_0 - t/\tau_{dep}$$

From [1-8]

EIC-ESR Spin Rotator System

• Rotates \hat{n}_0 to longitudinal at the IP for a wide range of e-beam energies (5-18 GeV)

Images from [10]

EIC-ESR Spin Matching Conditions

Images from [10], ESR spin matching conditions in [11] or [9].

EIC-ESR Polarization Requirements

- Maintain average polarization of at least 70%
- Bunches should be replaced on average every 2.2 minutes
- For $P_{\infty} = 30\%$, need $\tau_{eq} > 4.6$ min

Images from [10]

11

- Most accurate statistics including all nonlinearities
- Verify effects/significance of first-order spin matching
- Must cross-check between various modern codes
- Verify polarization robustness (i.e. with misalignments, ϵ_v -creator)

Methods

Monte-Carlo Spin Tracking Methods with Radiation

- Map Tracking damped maps generated between each bend center (radiation points*) by PTC w/ user-specified order
- Bmad Tracking element-by-element damped nonlinear maps w/ radiation points after each element
- **PTC Tracking** element-by-element symplectic integration w/ radiation points at each step within the element
- Bmad toolkit conveniently implements all the above tracking methods and can be run in parallel on a GPU cluster

*bend-splitting for radiation – "SLICKTRACK" – is necessary for accurate spin tracking

Methods

ESR 18 GeV Lattice Tracking Studies

- v5.3: $G_x = 0$, $G_z = 0$, $\eta, \eta' \neq 0$ in solenoid modules - 1IP
- v5.6: $G_x = 0$, $G_z \neq 0$, $\eta, \eta' = 0$ in solenoid modules - 1IP
 - $-\epsilon_y$ -creator
 - 2IP

All trackings started with 5,000–10,000 particle distribution generated from analytical equilibrium $\epsilon_a, \epsilon_b, \epsilon_c$

v5.3 Results $G_x = 0, G_z = 0$ $\eta, \eta' \neq 0$ in solenoid modules

Polarization

	v5.3 1IP		
	$ au_{eq}$ [min]	P_{∞}	
Analytical	31.1	61.3%	
1 st Order Map Tracking	30.7	66.4%	
2 nd Order Map Tracking	15.7	33.8%	
3 rd Order Map Tracking	6.5	14.0%	
Bmad Tracking	5.6	12.1%	
PTC Tracking	5.7	12.3%	

- Polarization significantly worse in nonlinear case
- Such significant damping should not occur if starting w/ equilibrium distribution. Is this a clue on what's happening?

Turn-by-turn RMS emittances

Nonlinearities might be driving tails of y-distribution to high amplitudes

 \rightarrow Core emittance likely a better measure...

Core emittance

- Emittance obtained by fitting a Gaussian to particles within some cutoff amplitude
- If perfectly Gaussian distribution, $\epsilon_{core} = \epsilon_{RMS}$ for all cutoff amplitudes
- Core emittances calculated as means of core emittance over turns 4,000 to end

 In nonlinear case, obtaining ~5 nm of vertical emittance even in the core

- There is some nonlinear effect present that:
 - \rightarrow Creates 5nm ϵ_b even in the core
 - \rightarrow Reduces DK polarization from 60% to 12%
- Only regions in ring where ϵ_b might be created is where there is coupling

 Try fully nonlinear trackings (including nonlinear solenoids) but with 1st, 2nd and 3rd order quadrupoles in between solenoids (settable in Bmad)

Core Emittance

• Almost entire effect presents with 2nd order quadrupoles in coupled regions

 Coupling in solenoid modules appears to not cancel for off-energy particles, creating ~5 nm of vertical emittance

Polarization?

Polarization

	v5.3 1IP		
	$ au_{eq}$ [min]	\pmb{P}_{∞}	
Analytical	31.1	61.3%	
Bmad w/ 1 st Order S.M. Quads	28.3	61.1%	
Bmad w/ 2 nd Order S.M. Quads	7.0	15.1%	
Bmad w/ 3 rd Order S.M. Quads	5.0	10.8%	
Bmad Tracking	5.6	12.1%	

• Chromatic effects in solenoid module quadrupoles the primary culprit

Conclusions – v5.3

- Coupling in solenoids appears to not fully cancel for off-energy particles
 - \rightarrow Creates ~5 nm of core vertical emittance
 - \rightarrow Reduces P_{∞} to 12%
- DA studies suggest having $\eta, \eta' = 0$ in solenoids highly beneficial \rightarrow Must turn off the short solenoid & lose the longitudinal spin match
- Raises two questions:
 - 1. Does having $\eta, \eta' = 0$ in the solenoids fix off-energy coupling correction?
 - 2. Can we live without a longitudinal spin match at 18 GeV?

v5.6 Results $G_x = 0, G_z \neq 0$ $\eta, \eta' = 0$ in solenoid modules

Results – v5.6 1IP

Does having η , $\eta' = 0$ in the solenoids fix off-energy coupling correction? Vertical core emittances:

Can we live without a longitudinal spin match at 18 GeV? Maybe – need to check Linear P_{∞} :

*nonlinearities give much lower actual P_{∞}

Results – v5.6 1IP

Polarization

	v5.6 1IP		
	$ au_{eq}$ [min]	P_{∞}	
Analytical	15.0	33.4%*	
1 st Order Map Tracking	14.0	32.9%	
2 nd Order Map Tracking	13.9	32.7%	
3 rd Order Map Tracking	13.7	32.1%	
Bmad Tracking	13.7	32.1%	
PTC Tracking	13.6	31.9%	

- Polarization holds up well for 1IP v5.6 in fully nonlinear case
- Will the same robustness be observed when including a ϵ_{v} -creator?

Several methods to create ϵ_{γ}

- 1. Localized closed η_y bump \leftarrow
- 2. Delocalized η_y
- 3. Localized coupling near the IR
- Inserted closed η_y bump in IP2 drift space that creates 2.5 nm ϵ_y
- Optimized so $G_y = 0$ for 1-turn from center of chicane
- Spin match was tricky: ϵ_y grew to ~ 5 nm

Polarization

	v5.6 1IP		v5.6 1IP + η_y bump		v5.6 1IP + η_y bump + $G_y = 0$	
	$ au_{eq}$ [min]	P_{∞}	$ au_{eq}$ [min]	P_{∞}	$ au_{eq}$ [min]	P_{∞}
Analytical	15.0	33.4%	6.8	29.3%	12.2	31.9%
1 st Order Map Tracking	14.0	32.9%	6.4	14.5%	8.9	24.5%
2 nd Order Map Tracking	13.9	32.7%	5.8	13.4%	6.2	17.1%
3 rd Order Map Tracking	13.7	32.1%	5.6	13.0%	6.6	18.0%
PTC Tracking	13.6	31.9%	5.4	12.5%	6.4	17.5%

• Careful implementation and vertical spin matching will be necessary if closed η_v -bump used as vertical emittance creator

Results – v5.6 2IP

Polarization

	v5.6 2IP		
	$ au_{eq}$ [min]	\pmb{P}_{∞}	
Analytical	7.6	16.9%	
1 st Order Map Tracking	6.8	15.6%	
2 nd Order Map Tracking	5.6	13.0%	
3 rd Order Map Tracking	6.7	15.4%	
Bmad Tracking	6.7	15.4%	

- Zero dispersion in the solenoid modules is necessary
 - Else, coupling is not fully corrected for off-energy particles
 - However, the longitudinal spin match is unachievable with η , $\eta' = 0$
- v5.6 1IP ($G_z \neq 0$) maintains sufficient polarization in fully nonlinear case
- More work to be done on ϵ_y -creation: determine most feasible method with least significant effect on polarization
 - Closed η_y -bump would require spin matching, which proved difficult
- v5.6 2IP polarizations lower than 1IP

References

- 1. L. H. Thomas, "I. The kinematics of an electron with an axis," *Philos. Mag.*, vol. 3, no. 13, pp. 1–22, 1927, doi: 10.1080/14786440108564170
- V. Bargmann, L. Michel, and V. L. Telegdi, "Precession of the polarization of particles moving in a homogeneous electromagnetic field," *Phys. Rev. Lett.*, vol. 2, pp. 435–436, 10 1959, doi:10.1103/PhysRevLett.2.435
- 3. L. H. Thomas, "Recollections of the discovery of the Thomas precessional frequency," *AIP Conference Proceedings*, vol. 95, no. 1, pp. 4–12, 1983, doi:10.1063/1.33853
- 4. A. A. Sokolov and I. M. Ternov, "On Polarization and Spin Effects in the Theory of Synchrotron Radiation," Sov. Phys. Doklady, vol. 8, p. 1203, 1964.
- 5. V. N. Baier and V. M. Katkov, "Quantum effects in magnetic bremsstrahlung," *Phys. Lett. A*, vol. 25, no. 7, pp. 492–493, 1967, doi:10.1016/0375-9601(67)90003-5
- 6. V. N. Baier, V. M. Katkov, and V. M. Strakhovenko, "Kinetics of radiative polarization," Sov. Phys. *JETP*, vol. 31, no. 5, p. 908, 1970.
- 7. Y. S. Derbenev and A. M. Kondratenko, "Polarization kinematics of particles in storage rings," Sov. Phys. JETP, vol. 37, pp. 968–973, 1973.
- 8. D. P. Barber and G. Ripken, "Computer Algorithms and Spin Matching," in *Handbook of Accelerator Physics and Engineering*. 2013, doi:10.1142/8543
- 9. M. G. Signorelli and G. H. Hoffstaetter, *Different forms of first order spin-orbit motion and their utility in spin matching in electron storage rings*, 2021, doi:10.48550/arXiv. 2112.07607
- D. Marx et al. "Designing the EIC electron storage ring lattice for a wide energy range". In: 13th Int. Particle Acc. Conf. (Bangkok, Thailand). JACoW Publishing, 2022, pp. 1946–1949. isbn: 978-3-95450-227. doi: 10.18429/JACoW-IPAC2022-WEPOPT042.
- 11. V. I. Ptitsyn, Spin matching derivation, Brookhaven National Laboratory, 2021.

Thank you! Questions?