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Overall progress in CEPC polarization studies

Study of the radiative depolarization effects in CEPC collider rings [1] (this talk)
— Spin tracking simulations for CEPC CDR lattice

— Comparison between simulations with theories

Longitudinally polarized colliding beams (Tao Chen’s talk)

— Polarization maintenance via the “spin resonance free” feature of the CEPC
booster lattice [2,3]

— Spin rotator design at CEPC-Z energy [4]

Resonant depolarization (Sep 29 WP1 talk)

— The option to prepare polarized e+/e- bunches from the injector
Compton polarimeter via scattered electron distribution [5]

[1] W. H. Xia, Z. Duan, Y. W. Wang, B. Wang, J. Gao, arXiv:2204.12718v1 [physics.acc-ph]
[2] V. Ranjbar, et al., PRAB 21, 111003 (2018). [3] Z. Duan, presentation at eeFACT 2022.
[4] W. Xia et al., RDTM (2022) doi: 10.1007/s41605-022-00344-2

[5] S. H. Chen et al., JINST 17, PO8005, (2022)



Outline

* Radiative depolarization theories
e Simulation setup

 Comparison between the theories and simulations
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Basics of spin motion in a storage ring
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Invariant spin field i: 7A(z;0)=7(Z;0 + 2m) , reduce to 7, on the closed orbit
Amplitude-dependent spin tune v;

— Reduce to vyon the closed orbit

— in planar ring: vy=Gy, ~103.5 @Z, 181.5@W and 272.5 @H

Adiabatic invariant /¢ = S-f

Time-averaged beam polarization P,y =<K S+ 71 I> fl > | Average over phase space
v

Particles near a
phase space point




Spin-orbit coupling resonances in circular accelerators

* 7 deviates from 71, near spin-orbit coupling resonances

Ve =k + kyvg + kyvy +hov., K kg, ky k. € 7. Note that v~ v, for small amplitude of orbital
motion

* In a planar ring without solenoids, 71y is normally vertical, but could deviate from vertical
near integer spin resonances, driven by horizontal magnetic field, for example from
misaligned quadrupoles

Vg = k y ke Z
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v' In synchrotron/booster, crossing an integer spin resonance could lead to 05t \\\
polarization loss, note the Fourier harmonic of integer spin resonances @y, 5 0o \

v" In an electron storage ring, as will be shown later, the tilt of i, from vertical = ]
direction, associated with @, contribute to the non-resonant spin diffusion of %} \
first-order spin resonances -1.0f . . ‘ ]
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Self-polarization build-up vs radiative depolarization

* Disregard the radiative depolarization, the self-polarization due to Sokolov-Ternov effect would

reach P, along 7i, in a time scale of Tp
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* The equilibrium beam polarization considering also the radiative depolarization is Fq along the

direction < ﬁ(f, 8) >3, in a time scale of Tpg
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The equilibrium beam polarization has the same amplitude around the ring, independent of

phase space location, due to the sufficient phase space mixing given that Torp damp K Tpk



Two views of influence of synchrotron motion on spin motion

The *“Static picture” [1]

The amplitude-dependent spin tune v, 1s a function of only

orbital actions J,, J, and J,

fi(Z, 0) is a function of 8 and orbital phases (angles).

The “dynamic picture” [2]

7 1s explicitly time-independent, synchroton motion is added

by hand.

The instantaneous spin precession rate v 1s dependent on the

instantaneous energy deviation 9,
v = ayy(1l+9)
Since v, < 1, vlooks like a slowly varying v,

underlying spin resonances could be crossed as a result of
synchrotron oscillations, or synchrotron radiation, or the

combined effect.
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[1] The vertical spin component of one particle
during 7 synchrotron periods. While the particle

energy oscillates, the reference energy of the ring
remained constant.

[1] Hoffstatter, High-energy polarized proton beams, Springer Tracts in Modern Physics, Vol 218, 2006.

[2] Derbenev, Kondrantenko and Skrinsky, Part. Accel. 9, 247 (1979)



Theories of radiative depolarization

* Stochastic photon emissions break the adiabatic invariant J
* Much different relaxation time scales of spin and orbit motion
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* Non-resonant spin diffusion[1,2,3]
— Away from main spin resonances

We follo“" the derivation by Shalun;v (2001). Also consult ﬁgl;re 50 i'or the vectors n and
&n before and after a photon emission. Denote the average spin projection along n by §,,, and
neglect the Sokolov—Ternov terms. Then

88, = (S, - 8n) = S, (n - 8n) + S, I(Kk" - 8n). (27.27)

Here k is the generalization of the vector ky = [ + im,, i.e. a solution of the spin precession
equation and orthogonal to n. Because the radiation does not depend on the spin phase, the
term in §, averaged over many photon emissions yields zero. The resulting change to S, is
diffusive: it is of the second order in the fluctuations, i.e.

88, =~ —1(5n)’S,, (27 28)
which yields Modern notation |— E
4. _ Lol 2 'Ky)z) S, 27 29)
dar ~ 20" \Wayl [ e fe T Tm (
where recall én =~ —(hwy, / EYp—ton7oy ). Equation (27.29) is ientical to equation (4.46) in

Baier (1972), with appropriate changes of notation. Recall alsgffrom (9.9) that

d(s 2 55 e*hy® 1
Gy/y)” _ e 71/’ 1 (27.30)
dr 24./3 m*c* |pf?
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This is the (11/18)|y (dn/dy)|* term in (27357 is is spin diffusion: the value of the
average spin projection S, evolves diffusively due to terms of second order in the fluctuations
(the first-order fluctuations average to zero).

[1] Derbenev, Kondratenko, Sov. Phys. JETP, 37, 968 (1973)

[2] Derbenev, Kondrantenko and Skrinsky, Part. Accel. 9, 247 (1979)

[3] Mane et al., Rep. Prog. Phys. 68, 1997, (2005)

Resonant spin diffusion [4,5,2]

— Fast, uncorrelated, repetitive crossing of a spin
resonance
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Chao, AIP Conf Proc 87, 395, 1982
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The formula (1) is the starting point in the present
paper, and it can be obtained on the basis of simple
arguments, which clarify the physical meaning. The
quantum fluctuations in the particle momentum during
the emission of radiation give rise to a stochastic stray-
ing of the detuning €,_ = v — vy as a result of the mixing
&mlm_eémﬂm!mw
ﬂ'ﬂﬁm—
mitted with velocity ek equal to

| éx] ~Cea®/x,,

where T is the radiative trajectory-mixing time (v is

f the order of the decrement of the radiative damping:

~ y*e’m” ]vl, = (1—v*) ™2 is the relativistic factor,

and e, m, and v are the electron charge, mass, and ac-
celeration respectwely) Under conditions of rapidity of
transmission (WI: < lex|), the change in the component
of the pa.rtlcle spin vector s along the direction n is
equal tol®

Asa=(8"—5a%) " (2nt|wa|*/| é.l )" cos (O +n/4),
where wy, ék, and &y are the values of the power, the

transmission velocity, and the phase of the spin preces-
sion at the instant when ¢ = 0.

Let £(I,) be the stationary distribution function of the
particles over the action variables I, of the orbital mo-
tion. The number of passages of a resonance per unit

Instantaneous
spin precession
ratev |

Spin resonance

time is equal to |é|f6 (v — v)dT. Then we obtain for th
mean rate ¢ of change of ¢ the expression

= [ dLaf 1) 1l () —=(B52) ==l 8 (v—) %,

1:’-=n2 Hwnl*6 (v—w)),
L]

4] Derbenev and Kondratenko, Sov. Phys. Dokl. 19, 438 (1975)
5] Kondratenko, Sov. Phys. JETP, 39, 592 (1974)

8




Non-resonant spin diffusion in a planar ring at high beam energies
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* First-order “parent” spin resonance
— Vg £ v, = k are more important

- 1.
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Vertical projection of w, onto k,,
tilt of 1y from vertical due to
integer spin resonances.

For vanishing v,, reduces to [1]
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[1] Derbeneyv, Kondrantenko and Skrinsky, Part. Accel. 9, 247 (1979) ! !
[2] Montague, Phys. Rep, 113, 1 (1984). [3] Yokoya, Part. Accel. 13, 85 (1983) Vz
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* Higher-order synchrotron sideband spin
resonances[1,3]

— vg £ mv, = k are more important

— Modulationindex . _ 90 _ %09
Vz Vz
T~ ff i Vg |oxl” e In(0®)
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Horizontal projection of w, onto
EO, due to vertical dispersions [2]




Correlated and uncorrelated regime of spin resonance crossing

* Follow the “dynamical picture” [1] that the instantaneous spin precession rate v is dependent on
the instantaneous energy deviation 6, underlying spin resonances could be crossed as a result of

synchrotron oscillations
* The following two regimes of spin resonance crossing were also proposed in [1]

2 .
* Correlated regime: )‘ <1 * Uncorrelated regime:
TP 2\ I
* Non-resonant spin diffusion & K= V’(’/ P <1 isviolatedand Y% > 1
z vZ

. on .
perturbative treatment of == applies o
a5 * Resonant spin diffusion

T, 11 & & V2 @k e=" In(02)
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Periodic crossing, perturbed by radiative diffusion
Periodic crossing, w/ radiative diffusion

\

Spin resonance Spin resonance
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CEPC CDR imperfection lattice seed setup

* Imperfection lattice seed
— Alignment and field error are introduced, without BPM errors so far C ”\
— Closed orbit & optics correction in SAD & AT. \
— The vertical emittance is adjusted to the design value L
* Quadrupoles in straight sections are artificially rotated (a) Straight sections of the CEPC
» Skew quads inserted next to Q1 & Q2 v [

* Translated from SAD to BMAD/PTC for spin tracking () Locaions o 501 0d 502 n e

interaction region

“ N 3 TABLE III. Emittances and fractional tunes of the CEPC at H
TABLE I. CEPC magnets’ errors. T G e D B e & rms closed orbit are 37um/28um

Component Misalignment error Field error SAD Bmad PTC .
Az(pm) Ay(pm) A (prad) Horizontal emittance (nmrad)  0.1731 0.1738 0.1733
Dipole - - - 0.01% Vertical emittance (pm-rad) 1.615 1.623 1.612 2o %ruw e
Arc quadrupole| 100 100 100 0.02% Longitudinal emittance (pm-rad) 0.9017 0.8956 0.9028 : m
IR quadrupole 50 50 50 _ Fra.ct}onal hon.zontal tune 0.108 0.108 0.108 ®
Sextupole 100 100 100 . Fractional vertical tune 0.217 0.217 0.216 10 100
extup Fractional synchrotron tune 0.028 0.028 0.028
IR B R R I -
(a) Horizontal closed orbit . (b) Vertical closed orbit.

TABLE II. The difference of the closed orbit (CO) and the relative difference of the beta function (A3/83) of the CEPC at 45.6
GeV calculated by SAD, Bmad and PTC. The minus sign indicates the difference between the two codes. “rms” is the root *T
mean square of the difference around the ring. “max” means the maximum absolute value of the difference around the ring.

COgmad-sap(m) COprc—sap(m) (AB/B)smaa-sap (AB/B)prc-sap

0,

Horizontal direction ™S 1.2x10°° 9.5x 107 % 6.9x10°% 1.6 x10°° <
6.8 x 1078 3.3x10°7 9.9 x 1078 42x 1074 :
Vertical direction ™S 1.4x10°1° 11x10°° 9.0x 1077 9.5x10°° .
max 1.3 x10°° 7.8 x 1077 1.4 x 1076 6.5 x 1074 :

S (m) S(m)

(c) Horizontal beta beating . (d) Vertical beta beating.



Spin tracking with BMAD/PTC

In this work, we used the SLIM algorithm of BMAD for simulation of radiative depolarization containing up to
first-order spin resonances.

We then dump the flat file and use PTC to launch Monte-Carlo simulations [1], taking into account of 6D

orbital motion and 3D spin motion, as well as realistic synchrotron radiation modeling.

We are aware of the recent development in BMAD Monte-Carlo simulations and will consider using these

advanced features in future studies.

orbital kick

N+4 integration nodes cover an element

1y nuMmbs f bod
entrance-fringe tegration ‘ exit-fringe

integration node integration node

/ exit-patch
integration node

entrance-patch
integration node

Q@
P

Q é\\r
Q

spin kick
photon-emission energy kick
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[1] Z. Duan, M. Bai, D. P. Barber and Q. Qin, NIM A793 (2015) 81.



Preparation for analytical estimation of radiative depolarization

Numerical calculation of harmonics @ and A

2rR _ 1 + k 2mR
D~ % (1+ k)yg (s)e™ ) ds Mo = y(8)ny (s)e™*ds
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SLIM simulations vs. first-order theory

Equilibrium polarization (%)

First-order theory:

Retain only the two nearest harmonics in the evaluation

100 -

an
96

n—+l1

11 3 V2 @kl + (vo — k)2 Ae|?
T 18 A [(w — k)2 — 2]

CEPC-Z

80
60
40|

20

O 1
102.5

103.0

1035 1040 1045

ayy

CEPC-W

with only contributions from first-order “parent” spin resonances vy + v, = k

10}

.
:
ol ¢

99 100 101 102 103 104 105 106 107 108

k
(a) |@x|?

100

[e 2]
o
T

60|
40}

20

Equilibrium polarization (%)

182.0

1825

99 100 101 102 103 104 105 156 107 108
k
(b) |Ak?

CEPC-Higgs

100f

Qo
o

60 [
40

20

Equilibrium polarization (%)

otk ]
271.5 272.0 272.5 273.0 273.5

ayy




Outline

e Radiative depolarization theories
e Simulation setup

e Comparison between the theories and simulations

16



Case study: dependence on beam energy

Equilibrium polarization (%)

o Monte Carlo

TABLE IV. The CEPC lattice parameters. (* indicates the planned operation energies in the CEPC CDR.)

Beam energy (GeV) ayo |@k|? (x107°)

[Xe? (x107°) os(x107") v, 7 () kK o

103.5 (@105 =27

[A103> = 2.2645

I ncr . n b r 45.6* oo =28 Padl? = 1.7166 377 0.028 252.72 0.03 1.39
creasi g eam ene gy 601 1365 I:Ejlz jfj I::lz = gggg 496 0028 63.34 0.20 2.42
|e a d to Ia rge r 06 , 69.8 1585 I:i:lz o I::ZIE ZOPT ST 00324 3000 0.36 282
= 2 _ 2 _
d I . . d d 80.0% 181.5 IZEIZ ; é‘;é Ri:* ; ‘;;éigs 6.61  0.0395 15.24 0.52 3.04
modadu at ION INAex 0 an 84.4 1915 Izzzlz = ig:g I:;Ii = 1.563222 6.97 0.0425 1165 0.61 3.14
= 2 _ 2 _
CO rre | at | O n | n d eX K 90.1 204.5 IZEZZE - ig:; :;zzz:z - g:ggg 743 0.0467 839 0.72 3.25
95.4 216.5 I:ii‘:lz z;i:g Iti% = ‘E;g; 788 00515 631 0.80 3.31
= 2 _ 2 _
99.8 226.5 I:z:‘:lz ; ;‘;j Itzjlz — 2_59'32(7)4 8.24  0.0550 5.03 0.90 3.39
109.9 249.5 I:i:j:i Zi?g It‘;zlz - Zg:gggé 9.08  0.0585 3.10 1.48 3.87
|@271|? = 7704 [Xor1|? = 41.6290
120.1* 272.5 |Da7a|? = 958 |Aora|? = 12.0825 9.90  0.0650 2.03 1.95 4.15

|@273|* = 1684.2 |Aa7s|* = 361.7036
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Case study: dependence on wiggler parameters at Z-pole

* Asymmetric wigglers are employed to boost self-polarization
build-up at Z-pole.

* The influence of various wiggler settings are simulated and
compared to theories.

o]
o
T 3

[}
o
T

Equilibrium polarization (%)

40t

. . . 20+
TABLE V. Beam parameters for various wiggler settings
wigglers 0+ (rad) Uo (MeV) o5(x10° ") 7, (h) & o Ok . 1 [ . , i
w/o - 36.1 3.77 252.8 0.03 1.39 0.002 0.003 0.004 0.005 0.006 0.007 0.008
Case 1  0.0033 43.9 9.53 32.3 0.22 3.52 6, (rad)
Case 2 0.0056 60.0 17.26 7.2 1.00 6.38 —eo— Monte Carlo —e— Correlated regime —e— Uncorrelated regime
Case 3 0.0080 84.8 24.55 2.5 285 9.07
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Case study: influence of harmonic RF cavity at Z-pole

* A double-RF system was proposed as a viable mitigation to the X-Z instability due to beam-beam[1].

* The synchrotron tune v, and its distribution among beam particles affects both the modulation
index o and the correlation index k. Various double-RF settings are simulated.
* Findings:
— The optimal lengthening case with vanishing v, at zero amplitude, agrees with “uncorrelated regime”
— There seems to be a transition from the correlated regime to uncorrelated regime, with decreasing v, at
zero amplitude.

optimal lengthening condition Scan the voltage of the passive

-0.05 0.00 0.05 .
1.07 RIS 2 harmonic system
: (a) normalized distributi VO AP
08" =—F D = 50 2
06! Vz _" ’119 =1
N s P aahda+ anta AL r::ooo—o.o-to'.” S 40 - 3 -
[ P 4 *\ © A [\
0_2: .‘. i o ‘ \ [
[ 3 .l © A [\
o.o " ‘, | !' ‘.
3.0 ' : . ‘ ' - R[]
(b) synchrotron tune _ - E 4 I £ £ o ] ‘ 1|
] S __:—:‘\___\ r 1 = .'-".o..-. 1 . 1 * !
&~ 2.0t — o PR \ e | J
o " = ANTYI G { 4
Sespmo-— | | \ & AT IR TR TRV
> 1.0} 1 e . eV YV YV Y V v '
05t 005 0.010
. ~0.05 0.00 0.05 '
2(m) e SLIM o First-order theory « Monte Carlo Uncorrelated regime 4 Monte Carlo e Correlated regime Uncorrelated regime
— Vz=0MV — Va=12MV Ve=24MV — V;=36MV — Optimal lengthening

[1] M. Migliorati et al., EPJP 136, 1190 (2021).



Summary

* We compared Monte-Carlo simulation of the radiative depolarization versus the two distinct

theories that describe the influence of synchrotron oscillations & radiations at ultra-high beam

energies.

* The comparison suggests a gradual evolution from the correlated regime to the uncorrelated
regime, not clear at the moment. Work urgent is needed to clarify the theory. For example using

the Bloch equation[1,2,3], that could merges into these theories at extremes.

* Generation of this study to more comprehensive lattice modeling and more error seeds is

foreseen, for better understanding the radiative depolarization mechanisms and establishing

correction methods to achieve a high beam polarization @ CEPC.

[1] Heinemann, et al., IMP A 34, 1942032, (2019). [2] Bosnosov Ph. D Thesis, University of New Mexico (2020). [3] Heinemann, et al., IMP A 34,
2041003 (2020).
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Thank you for your attention!



